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ABSTRACT: The past two decades have witnessed a tremendous number of
computational predictions of hydride-based (phonon-mediated) superconductors, mostly
at extremely high pressures, i.e., hundreds of gigapascals. These discoveries were strongly
driven by Migdal−Éliashberg theory (and its first-principles computational implementa-
tions) for electron−phonon interactions, the key concept of phonon-mediated
superconductivity. Dozens of predictions were experimentally synthesized and
characterized, triggering not only enormous excitement in the community but also
some debates. In this work, we review the computationally driven discoveries and the
recent developments in the field from various essential aspects, including the theoretically
based, computationally based, and, specifically, artificial intelligence/machine learning (AI/ML)-based approaches emerging within
the paradigm of materials informatics. While challenges and critical gaps can be found in all of these approaches, AI/ML efforts
specifically remain in their infancy for good reasons. However, there are opportunities in which these approaches can be further
developed and integrated in concerted efforts, in which AI/ML approaches could play more important roles.

1. INTRODUCTION
Superconductivity was discovered by H. Kamerlingh Onnes in
1911.1 When cooling some ordinary substances such as
mercury and lead down to a critical temperature Tc near
absolute zero, Onnes found that their electrical resistance R
completely disappears, signaling that they can carry a current
indefinitely without losing any energy. In this state, a
superconducting material is a perfect diamagnet; i.e., it
completely repels external magnetic fields in the phenomenon
known as the Meissner effect.2 Although the Tc discovered for
the first superconductors is generally very low, e.g., just a few
Kelvin,3−5 the discovery of superconductivity triggered not
only the development of a new branch of condensed matter
physics6−30 but also significant interest from society31−33 in the
century to come. The ultimate research goal is a material that
“superconducts” electricity under ambient conditions, i.e., at
room temperature and above (Tc ≥ 300 K) and at atmospheric
pressure (P ≃ 0.1 GPa). If such a material was to be
discovered, it would unlock many technologies previously
confined to science fiction, potentially transforming human
civilization as we know it.34,35 Before the 21st century,
numerous new superconductors were discovered,36−51 pushing
the record for Tc to ≃150 K45,46 under (nearly) ambient
pressure (see Figure 1). This period was largely propelled by
experimental efforts, often performed in combination with
profound physics expertise and intuition.
Concurrently with experimental advancements, a new

branch of theoretical condensed matter physics emerged,
dedicated to the understanding of superconductivity, “a
manifestation of the quantum world on a macroscopic
scale”,22 from the atomic level.6−23,25−27 The first solid

microscopic theory of superconductivity was developed by
Bardeen, Cooper, and Schrieffer (BCS) in 1957.12−14 Briefly,
lattice phonons can mediate a net attractive interaction
between certain pairs of electrons in the neighborhood of
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Figure 1. Time evolution of Tc for some classes of superconductors.
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the Fermi surface, fusing them into a bound state called a
Cooper pair.12 Below Tc, the Cooper pairs can form a robust
quantum condensation that can flow without dissipation. Some
years later, Migdal-Éliashberg theory was developed,19−24

providing a more complete, truly many-body approach for
the simplified model of instantaneous electron−phonon (EP)
interactions in the BCS theory. From another perspective,
theoretical endeavors25−30 have expanded far beyond the
phonon-mediated pairing mechanism, which applies to
approximately one-third of known (conventional) super-
conductors.52 For the remaining two-thirds of (unconven-
tional) superconductors, in which this pairing mechanism does
not apply, dozens of new mechanisms were suggested,
involving possible roles of screened Coulomb interactions,53

polarons,54 anyons,55 Majorana Fermions,56 topology,57 spin
fluctuations,58 resonating valence bond states,59 and more.
Unconventional superconductors are arranged into numerous
classes, e.g., cuprates,38 iron-based,48−51 heavy Fermion
materials,60,61 and organic materials,62−65 and each may be
associated with one or more pairing mechanisms. Theoret-
ically, the proposed mechanisms impose no inherent limits on
Tc; in fact, the Kohn−Luttinger theorem53 allows for an
arbitrarily small Tc. After all, superconductivity remains one of
the most challenging and enigmatic topics of physics, with
much yet to be understood.
Starting from the 2000s, first-principles computational

approaches and the required infrastructure have pro-
gressed66−72 to the point where they can provide, within the
framework of Migdal−Éliashberg theory, some valuable
guidance in the search for new phonon-mediated super-
conductors.73−97 Two classes of first-principles-based methods
that are critical for superconductor discovery are structure
prediction methods66,67 and density functional perturbation
theory (DFPT).71,72 The former is used to explore the
configuration space, while the latter is used to approximate the
EP interactions. Equipped with these tools, one may start from
a hypothetical chemical formula, predicting the lowest-
enthalpy atomic structures at specific pressures, examining
their thermodynamic and dynamical stability, evaluating the
EP interactions, and, finally, estimating their Tc. This generic
workflow (shown in Figure 2a) was used predominantly during
the past two decades, leading to thousands of predictions for
high-Tc materials.73−92 Dozens of them, including SiH4,

98

H3S,
99 LaH10,

100,101 ThH10,
102 BaH12,

103 YH6,
104,105 YH9,

105

CeH9 and CeH10,
106 CaH6,

107,108 and LaBeH8,
109 were

synthesized and tested experimentally (see Table 1 for a
summary), increasing Tc to a record of ≃250 K, but at the cost
of ultrahigh pressures (P) of ≃100−200 GPa. Despite these
achievements, critical gaps remain in various stages of the
workflow, possibly impacting its predictive power, which is one
of the points raised52 in the ongoing debates in the
field.52,110−116

Figure 1 provides a snapshot of the evolution of Tc during
the past century. New discoveries, labeled as “hydride
superconductors” in Figure 1 and summarized in Table 1,
were synthesized and tested experimentally, while some of
them were reproduced independently. The highest-Tc conven-
tional superconductor is MgB2 with a Tc of ≃39 K,47 while the
Tc values of unconventional superconductors reach ≃150
K.45,46 The discoveries of hydride superconductors push the
boundary to ≃250 K at hundreds of gigapascals. Some points
should be noted here on them. First, the discoveries are
strongly driven by the Migdal−Éliashberg theory-based first-

principles computational workflow, suggesting the growing role
of this non-experimental method. Second, hydride super-
conductors are predominant in the discoveries,80 perhaps
because the field is strongly inspired by Ashcroft, who, in 2004,
predicted117,118 that high-Tc superconductivity may be found
in hydrogen-dominant alloys, probably at high pressure. The
main rationale is that such materials may feature high
vibrational frequencies involving the hydrogen atoms, thus
enhancing the electron−phonon interactions. Finally, some
extraordinary experimental claims were retracted in the past
several years after facing valid concerns from the commun-
ity.52,110−116 We believe that transparency and healthy debates
are important for the scientific integrity of all fields, including
superconductivity.

The surge in computation-inspired superconductor discov-
eries73−92 is occurring almost simultaneously with the
emergence of materials informatics,119−126 a new frontier of
materials research. Within this paradigm, artificial intelligence/
machine learning (AI/ML)-based methods are developed to
learn past data and accelerate the understanding, discovery,
and design of new materials. Given their nature, AI/ML
approaches may, in principle, complement any physics-based
experimental and computational methods that can produce
reliable data. Despite considerable efforts,91,92,127−165 materials
informatics approaches for superconductor discovery remain in
their infancy.142,157 Upon examination of other branches of
materials informatics where concerted efforts with traditional
physics-based methods are blossoming, it is obvious that
superconductor discovery would greatly benefit if the
informatics-related developments were to gain more momen-
tum.

In this work, we will review the recent computation-driven
discoveries of hydride superconductors with an eye to the
emerging paradigm of materials informatics, which can, in
principle, be useful for the future discovery of superconductors
in any classes. For this goal, section 2 is devoted to the
essential background of supderconductor discovery, including
the Migdal−Éliashberg theory, the first-principles computa-
tions of phonon-mediated superconductivity-related proper-

Figure 2. Typical (a) computational and (b) experimental workflows
for superconductor discovery. ML efforts are divided into five groups
(see section 4). Three of them are (iii) predicting superconductivity-
related properties, (iv) accelerating the structure predictions by ML
potentials, and (v) deriving new formulas of Tc. Some computational
predictions were advanced to experimental synthesis and character-
ization.
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ties, and the computational workflow used widely for the
discoveries. Section 2 also includes a minimal coverage of some
experimental methods needed for the discussions, although the
main theme of this work is non-experimental. Then, in section
3, major computation-driven experimental discoveries that
were reproduced and confirmed at some levels are reviewed.
Next, an introduction of materials informatics is given in
section 4, followed by a review of the materials informatics
works that have been completed in this field. Finally, we offer
in section 5 some opinions on the remaining challenges and
some forward-looking next steps, specifically in terms of what
materials informatics can do to further contribute to the future
of superconductor discovery.

2. FUNDAMENTALS OF SUPERCONDUCTOR
DISCOVERY
2.1. Migdal−Éliashberg Theory. In BCS theory,8,13 the

phonon-mediated interaction between certain pairs of
electrons residing within an energy cutoff ωc from the Fermi
surface is assumed to be instantaneous and constant, while
vanishing beyond ωc. This simplified picture does not include
enough of the physics of interacting electron−phonon systems.
Migdal−Éliashberg theory is more complete,19−24 taking into
account the retarded nature of the EP interactions, considering
the first order of vertex corrections,21 while relying on the
Migdal theorem20 to treat the damping of the excitations.
Central to this theory are the anisotropic nonlinear integral

Éliashberg equations involving Matsubara gap Δ(k, iωn) and
renormalization factor Z(k, iωn) . On the imaginary axis, they
are166
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where NF is the density of states (DOS) at Fermi level εF, iωn =
iπT(2n − 1) is the nth Matsubara frequency where n = 0, ±1,
±2, ..., T is the temperature, and V(k − k′) is the screened
Coulomb interaction between electronic states k and k′.
Furthermore
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n n0 2 2

2
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+

× (3)

is the EP coupling, determined from the EP spectral function

Table 1. Notable Hydride Superconductors, Given in Terms of Chemical Formula, That Were Discovered Computationally
and Then Confirmed Experimentally from the 2000sa

formula Tc
max (K)

P@Tc
max

(GPa)
experimental
discovery

computer
prediction short summary

SiH4 17.5 90 200898 2006,230,231
2007232

electrical resistance measured, P63 structure resolved, not matched with predictions,
multiple structure searches follow, refining the structure

H3S 203 155 201599 201482 electrical resistance and magnetic susceptibility measured, Im3̅m structure resolved and
matched with predictions, superconductivity replicated233−237

LaH10 250 170 2019100,101 201787,88 electrical resistance measured, Fm3̅m structure resolved and matched with predictions,
superconductivity replicated238

ThH9 146 170 2020102 N/A electrical resistance measured, P63/mmc structure resolved
ThH10 161 174 2020102 201889 electrical resistance measured, Fm3̅m structure resolved and matched with predictions
PrH9 8.4 120 2020239 2020239 electrical resistance measured, P63/mmc structure resolved and matched with

predictions
BaH12 20 140 2021103 2021103 electrical resistance measured, Cmc21 structure resolved and matched with predictions
(La,Y)H10 253 199 2021211 2021211 electrical resistance measured, Fm3̅m structure resolved and matched with predictions
YH6 224 168 2021104 201586,88 electrical resistance measured, Im3̅m structure resolved and matched with predictions,

superconductivity replicated105220 183 2021105 201586,88

YH9 243 201 2021105 201788 electrical resistance measured, P63/mmc structure resolved and matched with
predictions, superconductivity replicated240

CeH9 57 88 2021106 201788 electrical resistance measured, P63/mmc structure resolved and matched with
predictions, Tc replicated and diamagnetism of the Meissner effect probed241

CeH10 115 95 2021106 201788 electrical resistance measured, Fm3̅m structure resolved and matched with predictions
ScH3 18.5 131 2021242 2010,243

2016244
electrical resistance measured, Fm3̅m structure resolved and matched with predictions

LuH3 12.4 122 2021242 N/A electrical resistance measured, Fm3̅m structure resolved
CaH6 215/210 172/160 2022107,108 201281,148 electrical resistance measured, Im3̅m structure resolved and matched with predictions,

superconductivity replicated108

SnH4 72 180 2023245 2023245 electrical resistance measured, Fm3̅m structure resolved and matched with predictions
LaBeH8 110 80 2023109 electrical resistance measured, Fm3̅m structure resolved
NbH3 42 187 2024246 N/A electrical resistance measured, Fm3̅m structure resolved
La0.5Ce0.5H10 175 155 2024247 2024247 electrical resistance measured, Fm3̅m structure resolved
Y0.5Ce0.5H9 141 130 2024248 N/A electrical resistance measured, P63/mmc structure resolved
La4H23 90 95 2024249 NA electrical resistance measured, Pm3̅m structure resolved

aFor each, maximum observed critical temperature Tc
max, P@Tc

max at which Tc
max was observed, years and references of (experimental) discoveries

and (computational) predictions, and a short summary of the discoveries are provided.
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F N gk k( , , ) ( )k k k k
2

F ,
2= | |

(4)

In eq 4, gk,k′
ν is the EP matrix elements, ν is the polarization

index of the phonon with frequency ω, and δ is the delta-Dirac
function. When the anisotropy of the Fermi surface is weak,
the isotropic spectral function

F
N

F k k( )
1

( , , ) ( ) ( )
k k

k k
2

F
2

,

2=
(5)

can be used to suppress the k dependence in eqs 1−3, yielding
two isotropic Éliashberg equations and an isotropic EP
coupling λ(n − n′) . Within this approximation, the BCS gap
equation can be reproduced by setting λ(n − n′) = λ for both
|ωn|, |ωn′| < ωc, and 0 otherwise,18 where

F
2 d

( )
0

2

=
(6)

is the dimensionless isotropic EP coupling λ(n − n′) at n = n′
that will be used extensively in the literature.
One way to examine the superconductivity of a material is to

solve the Éliashberg equations (eqs 1 and 2) self-
consistently166−168 at multiple values of T for a nontrivial
solution Δ(k, iωn) and the highest T at which Δ(k, iωn) ≠ 0
defines Tc. In this procedure, two main inputs are spectral
function α2F(k, k′, ω) and dimensionless Coulomb pseudo-
potential μ*, introduced as a treatment for the last term of eq
2. It is defined by166,167,169

N V
N V

k k
k k

( )
1 ( ) ln( / )

F

F F c

* =
+ (7)

where the double angle brackets denote the double average of
the screened Coulomb interaction over k and k′ on the Fermi
surface. With μ* defined in eq 7 and precomputed, λ(k, k′, n −
n′) − NFV(k − k′) becomes λ(k, k′, n − n′) − μ* before eqs 1
and 2 are solved numerically.166,167

To bypass the cumbersome step of solving the Éliashberg
equations (eqs 1 and 2), in 1968, McMillan170 started from
some solutions of these equations to develop a direct, empirical
formula for Tc, given that isotropic spectral function α2F(ω) is
known. It was then modified by Allen and Dynes171,172 in 1975
to be

T
1.2

exp
1.04(1 )

(1 0.62 )c
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Ä
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ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ

= +
* + (8)

where

F
exp

2
d ln( )

( )
log

0

2Ä
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ÅÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑÑ

=
(9)

is the first logarithmic moment of α2F(ω). In the McMillan
approach, μ* is an empirical parameter typically ranging from
0.10 to 0.20.117,118 The empirical eq 8 is good for λ ≤ 1.5,
while additional empirical parameters are needed for larger
values.172 Recently, there have been some efforts133,134 to
derive alternative formulas of eq 8, and they will be reviewed in
section 4.5. Because of its simplicity, the McMillan formula (eq
8) and some related versions172 were used extremely widely in
the literature to estimate Tc, given the computed α2F(ω).
The domain of applicability is an essential aspect of a

mathematical model. According to the Migdal theorem,20

Migdal−Éliashberg theory is believed19 to be valid if the

phonon energy scale is much smaller than the electronic
energy scale, i.e., λωc/εF ≪ 1, even in the strong coupling
regime, i.e., λ ≥ 1. Subsequent examinations173−178 suggest a
more complex picture. Among others, a common conclusion of
these works is that Migdal−Éliashberg theory may be
inaccurate when λ exceeds a certain value, which can be
0.4,173 1.0,174,175 1.3,176 or 3.7.177 Given that λ ≥ 1.0 in most
of the published reports employing this theory to predict
Tc,

73−92 we believe that extra care is needed for the
predictions. Readers who are interested in the validity and
the possible breakdown of Migdal−Éliashberg theory are
referred to some recent beautiful reviews21,22 and original
articles.173−177

2.2. First-Principles Computations. Computing EP
matrix element gν

k, k′ from first principles, and thus α2F(k,
k′, ω) and α2F(ω), is crucial for using Migdal−Éliashberg
theory in practice.24 The standard method for such
computations is DFPT,71,72 a perturbation treatment for the
response of quantum systems described at the level of density
functional theory (DFT).179,180 Notable implementations of
DFPT can be found in QUANTUM ESPRESSO

181,182 and
ABINIT,183−185 two major DFT tools for calculating phonon-
related properties of solids. Using these packages, thousands of
predictions of superconductors have been reported since the
2000s.73−95 While the calculations of α2F(k, k′, ω) and α2F(ω)
are computationally demanding, some high-throughput
efforts140,141,148−150 have made significant strides in this area.

In practice, α2F(k, k′, ω) and its isotropic version, α2F(ω),
are computed on two finite-size Γ-centered grids, one for the
(electronic) k points and one for the (phononic) q points
defined as q = k − k′, while the q grid must be a subgrid of the
k grid. Once α2F(k, k′, ω) and α2F(ω) are computed, there are
two ways to estimate Tc, as discussed in section 2.1. In the first
approach, eqs 1 and 2 are solved iteratively, e.g., on the
imaginary axis, for a nontrivial solution of Δ(k, iωn) using a
designated code like Electron−Phonon Wannier (EPW).166−168

Then, real-axis superconducting gap function Δ0(T) is
approximated from Δ(k, iωn), e.g., using Pad́e continuation.186

Finally, Tc is determined as the maximum temperature at
which order parameter Δ0(T) remains non-zero. The second,
and more commonly employed, method uses empirical
formulas for Tc from prior solutions to the Éliashberg
equations, such as the McMillan formula (eq 8). Having
α2F(ω), λ and ωlog can be computed using some
postprocessing tools187 of the QUANTUM ESPRESSO suite181,182

and ABINIT
183−185 for eqs 6 and 9. Unfortunately, both

approaches need an empirical value of μ* for some
reasons,167,181−185 while efforts to derive more rational values
of μ*, e.g., using eq 7, are limited.188

Although the DFT-based calculations may be exact in
principle, practical calculations of superconductivity-related
quantities require certain finite-size k- and q-point grids,
pseudopotentials, exchange-correlation functionals, finite-en-
ergy cutoffs, finite smearing widths for the δ functions in eqs 4
and 5, empirical values of μ*, whether to include anharmonic
effects104 and/or spin−orbit couplings,189 and more.142,190,191

In many cases, the desired convergence, e.g., with respect to
the k- and q-point grids, may be computationally prohibitive,
and some affordable parameters must be assumed. In fact,
controlling these factors is challenging in phonon-related
calculations, because acceptable numerical errors in energy and
force evaluations are several orders of magnitude smaller than
those deemed sufficient for standard DFT calculations. Despite
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the established reliability of DFT in regular electronic structure
problems,192 the factors described above present potential
sources of numerical error when computing α2F(k, k′, ω),
α2F(ω), and, ultimately, Tc. A more detailed discussion of
these challenges is presented in section 5.1.
2.3. A Practical Computational Discovery Workflow.

Targeted materials discovery, often termed “inverse design”,
involves the guided exploration of the vast materials space to
find synthesizable materials possessing the desired proper-
ties.193−198 In a broad sense, the materials space is truly
infinite, containing all possible chemical compositions, external
conditions, microscopic details, macroscopic morphologies,
additives, and processing parameters needed to describe and
fabricate a material. Due to this immense complexity and
space, a trial-and-error approach is impractical, even with
highly efficient evaluation and decision-making processes.
Instead, an effective inverse design strategy must involve an
“intelligent” protocol that rationally directs the exploration
toward the targeted properties. Limited versions of this
protocol were developed,193−198 actively contributing to the
recent discovery of various functional materials.199−206 One
strategy, which is widely used for discovering superconduc-
tors,73−95 is depicted in Figure 2a. In this strategy, computa-
tional methods for predicting atomic structures have reached
an advanced level of maturity.66−68

The computational workflow for discovering new super-
conductors, as shown in Figure 2a, consists of several steps.
First, usually guided by chemical intuition and expertise, a
targeted chemical formula and external conditions (e.g., a
range of pressures) are selected. Subsequently, employing a
DFT-level structure prediction method, the atomic structures
that are both thermodynamically and dynamically stable are
predicted. In this step, a pressure−temperature phase diagram
of the targeted chemical formula is usually needed.85,207,208 For
this purpose, one may need very expensive computations for
the Gibbs free energy of different atomic phases, e.g., using
advanced tools like PHONOPY

209 and SSCHA.210 Next, the
superconducting properties of these atomic structures are
computed, by either solving the Éliashberg equations or using
the McMillan formula, to identify those with respectable
predicted Tc values. While most of the computational works
conclude at this juncture, some proceed to experimental
synthesis and testing of these new materials, confirming the
predicted superconductivity, as sketched in Figure 2b.
If we put the computations of phonon-mediated super-

conducting properties aside, atomic structure prediction is a
very time-consuming step. Its goal is to find a thermodynami-
cally stable arrangement of atoms for a given chemical formula
at a given pressure, considering its potential decomposition
into all possible related materials. This requires, at least, a
convex hull analysis,84−89,208,211 which necessitates the
prediction of the lowest-enthalpy atomic structure, i.e., the
global minimum of the multidimension potential energy
surface (PES), for each related formula. Given the exponential
increase in the number of local minima on a PES with the
system size,212 the global optimization problem for each
formula presents a formidable challenge. Despite its computa-
tional costs, an advanced first-principles-based materials
structure search is strongly desired to explore unknown
domains of the materials space in which unknown chemistries
and atomic structures are expected, and relying on the known
prototype structures is insufficient. In fact, unconstrained
structure prediction endeavors have uncovered numerous

novel (non-existing) atomic structures207,213−215 that were
then confirmed experimentally.216−218 For superconductor
discovery, the structure prediction step is critical, especially
when the searches extend to the territories no one has ever
explored, e.g., at hundreds of gigapascals. Current state-of-the-
art structure prediction methods, which were used widely in
superconductor discovery, are USPEX,219,220 CALYPSO,221 ab initio
random structure search (AIRSS),222 XtalOpt,223 MAISE,224 and
minima hopping.225,226

2.4. Experimental Synthesis and Characterizations.
Some computationally discovered hydride superconductors
were synthesized and tested experimentally.98−109 For those
advanced to this step, the targeted formulations are typically
synthesized by reacting pure metals with excess hydrogen or
hydrogen-rich gases, e.g., ammonia borane and hydrocarbons,
often using laser heating in diamond anvil cells (DACs) under
the desired pressure.

With the samples in hand, electrical resistance R was always
examined, typically using the four-point probe technique.250,251

By definition, the presence of a superconducting transition is
implied when R decreases sharply to zero at critical
temperature Tc. The isotope effect,252,253 a footprint of the
lattice dynamics on the phonon-mediated superconductivity,
can then be observed in the dependence of Tc on the average
isotope mass of the material. Magnetic susceptibility measure-
ments are more challenging but critical254,255 because they can
help probing the Meissner effect,2 a hallmark of super-
conductivity, while providing other essential information such
as the critical field, penetration depth, and critical current
density. Four methods that may be used are alternating-current
(AC) susceptibility measurements using a pickup/compensat-
ing coil architecture,234 a superconducting quantum interfer-
ence device (SQUID) magnetometer,99 the synchrotron
Mössbauer technique,256 and a quantum sensing approach
involving nitrogen-vacancy centers implanted in DACs.241,257

As performing these techniques under hundreds of gigapascals
in a DAC is nontrivial, only a few magnetic susceptibility
measurements have been reported.234,238 Instead, the most
widely used approach is to measure the dependence of Tc on
the external magnetic field, the behavior that could reveal the
upper critical field, ultimately linking to the coherence length
of the superconducting state.7,258 A new method,259 measuring
the magnetic flux trapped inside the superconducting samples,
i.e., the incomplete Meissner effect, seems to be useful. Finally,
resolving the atomic structure of the synthesized samples is
desirable. For this goal, the X-ray diffraction (XRD) pattern
and sometimes Raman scattering are powerful methods.
Overall, tremendous challenges remain for the experimental
techniques in superconductor discovery, specifically magnetic
susceptibility measurements at extremely high pressures in a
DAC, and readers are referred to refs 241, 257, and 259 for
more information.

Figure 2b summarizes the aforementioned measurements,
among others, desired and used for probing the possible
superconductivity. All of the discovered hydride super-
conductors discussed in section 3 have been experimentally
synthesized, and at least one of the three characteristics is
examined.

3. COMPUTATION-DRIVEN SUPERCONDUCTOR
DISCOVERIES

We now turn to the discoveries of hydride superconductors in
the past two decades, mostly driven by the first-principles
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computational methods and workflow. It is interesting to note
that Ashcroft’s prediction117,118 about the possible super-
conductivity in hydrides came more than three decades after
his similar prediction about compressed hydrogen.260 One way
to view the difference between the two predictions is that
hydrogen atoms in solid materials are “chemically precom-
pressed”;230 thus, realizing the prediction in these materials
could be technically more feasible. This may be a reason why
the latter117,118 was soon followed by thousands of computa-
tional and dozens of experimental discoveries.
Table 1 and Figure 3 provide a (likely incomplete) summary

of the computational and experimental discoveries reported

starting from the 2000s. Not surprisingly, most of the materials
are rich in hydrogen, predicted to be superconductors at very
high pressures, reaching ≃800 GPa. One of the most striking
computational predictions is the superconductivity of
Li2MgH16 at 250 GPa with a Tc of ≃473 K, or 200 °C,227

while the first major experimental discovery is the super-
conductivity of H3S at 155 GPa with a Tc of 203 K.99 This
discovery is remarkable because it reproduced a majority of the
computational predictions reported one year earlier.82

The remaining part of this section is devoted to a detailed
discussion of some superconducting materials that were
predicted computationally and then synthesized and tested.
Given the scope and the limited length of this work, and an
extensive list of experimental discoveries presented in Table 1,
we will examine a few of them that were reproduced
independently and/or sparked significant interest and follow-
up works from the community. For other discoveries, readers
are referred to Table 1 in which a short summary and relevant
references are given for each.
3.1. Silane SiH4. Silane SiH4 is the first hydride

superconductor computationally predicted in 2006230−232

and experimentally reported in 2008,98 shortly after Ashcroft’s

later prediction.117,118 Upon examination of multiple atomic
structures of SiH4 and computation of frequency cutoff ωc at a
first-principles level, the orthohombic Pman structure stands
out with a predicted Tc ≃ 1.13ℏωc/kB exp(−1/NFV) ≃ 166 K
at 202 GPa.230 In the same year, after a search for high-
pressure structures of SiH4, a qualitative assessment of the
possible superconductivity, specifically involving a monoclinic
C2/c phase, was conducted with a preferable conclusion at
pressures of ≤50 GPa.231 From 50 to 250 GPa, an insulating
tetragonal I41/a phase was predicted231 to be thermodynami-
cally stable and then confirmed experimentally.261,262 One year
later, the computational workflow based on Migdal−Éliashberg
theory was used232 for another monoclinic C2/c structure,
visualized in Figure 4a, predicting a Tc ≃ 45−55 K at 90 and
125 GPa. Spectral function α2F(ω) and the accumulated λ(ω)
of this phase are shown in Figure 4b.

The computational predictions were followed by an
experimental discovery,98 in which SiH4 samples, shown in
Figure 4c, were fabricated. Electrical resistance measurements
(one of them is given in Figure 4b) clearly show the
superconducting-like decreases at a pressure-dependent critical
temperature Tc. Between 65 and 90 GPa, Tc increases from 7
to 17.5 K before decreasing and increasing again in the regime
of 120−200 GPa, as shown in Figure 4e. This behavior
suggests the involvement of more than one phase of SiH4.
Upon examination of Raman scattering and the XRD pattern, a
superconducting hexagonal P63 phase was resolved in the first
regime and the predicted I41/a phase231 was confirmed again
in the second regime, in which both phases coexist.

While the superconducting hexagonal P63 phase was not
predicted computationally, the discovery of the predicted
superconductivity in SiH4 and the verification of the predicted
I41/a phase are intriguing. In fact, they motivated multiple
computational structure searches for SiH4

229,263,264 and
disilane, a related compound with a formula of Si2H6.

265,266

As the P63 phase was found263 to be dynamically unstable, a
related orthorhombic Cmca phase was suggested as a candidate
for the superconducting phase of SiH4. Among the structures
subsequently found264 for SiH4, an orthorhombic Pbcn phase is
not only thermodynamically more stable than the Cmca phase
but also related to the P63 phase through its dynamical
instability. Furthermore, the computed λ and ωlog of the Pbcn
phase lead to a Tc of ≃16.5 K by using the McMillan
formula.264 To close this section, we refer readers to ref 262 for
a summary of such SiH4-related efforts.
3.2. Sulfur Hydride H3S. In 2014, a structure prediction

effort82 was performed to search for possible stable atomic
structures of (H2S)2H2 at increased pressures of ≤300 GPa.
This work was partially motivated by an early experimental
report,233 showing that H2S and H2, both gases under ambient
conditions, can form stoichiometric compound H3S near 3.5
GPa. The computational examination82 reveals that when P
increases, the H3S compound undergoes a series of structural
phase transitions from P1 to Cccm at 37 GPa, then to R3m at
111 GPa, and finally to Im3̅m at 180 GPa. Upon examination
of the simulated XRD pattern at 22 GPa, the stable P1 phase of
H3S was found82 to match with that experimentally
reported.233 As the R3m and Im3̅m phases are metallic at the
pressures at which they are stable, superconducting-related
calculations suggest that at 130 GPa, the R3m phase has a λ of
2.07 and an ωlog of 1125.1 K, which can be translated to a Tc
range of ≃155−166 K using eq 8 with μ* ranging from 0.10 to
0.13. Likewise, at 200 GPa, the Im3̅m phase has a λ of 2.19, an

Figure 3. Incomplete snapshot of the phonon-mediated super-
conductors discovered computationally. For some of them, e.g., H3S
and LaH10, experimental data are available and also shown.
Highlighted in the figure, data for MgB2 at 0 GPa, Li2MgH16 at 250
GPa, H at 700 GPa, and SiH4 at 800 GPa are taken from refs 47, 227,
228, and 229, respectively. Some of the data used for this figure were
used for Figure 2c of ref 142.
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Figure 4. (a) Predicted C2/c structure of silane SiH4.
232 (b) Spectral function α2F(ω) and accumulated λ(ω) of the C2/c structure. (c) Fabricated

sample placed within the four-point probe. (d) Representative superconducting step in measured resistance. (e) Pressure-dependent Tc measured
for silane. Panel b and panels c−e were reprinted with permission from ref 232 (Copyright 2007 IOP Publishing) and ref 98 (Copyright 2008 The
American Association for the Advancement of Science), respectively.

Figure 5. (a) Predicted Im3̅m structure of H3S. (b) Phonon band structure, spectral function α2F(ω), and accumulated λ(ω) of the Im3̅m structure
at 200 GPa. (c) Four Ti electrodes sputtered on a diamond anvil, i.e., a four-point probe; at the center of them is the sample. (d) R−T dependence
measured for H3S at different pressures. (e) R−T dependence measured for H3S and H3D, which reveals the isotope effect. (f) Magnetization
measured as a function of external field, showing the diamagnet and paramagnet characteristics below and above the Tc of ≃203 K, respectively.
Panel b and panels c−f were reprinted with permission from ref 82 (under a Creative Commons license) and ref 99 (Copyright 2015 Springer
Nature), respectively.
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ωlog of 1334.6 K, and finally a Tc range of ≃191−204 K. The
phonon band structure, spectral function α2F(ω), and the
accumulated λ(ω) of the Im3̅m phase of H3S at 200 GPa are
reproduced in Figure 5a.
In 2015, the superconductivity with a record-breaking Tc of

203 K at 155 GPa was observed on synthesized samples of H3S
(see Figure 5c) and reported.99 Figure 5d shows the sharp
decreases in electrical resistance to zero when T is decreased to
a critical value that depends on the pressure. A strong isotope
effect was also observed99 and is shown in Figure 5e, implying
a link to the lattice phonons. Magnetic susceptibility
measurements were performed using SQUID,99 revealing a
transition from the diamagnetic to the paramagnetic state at
≃203.5 K, as shown in Figure 5f.
The superconductivity in H3S was reproduced by some

other groups.234−237,256 In one effort,234 the superconductivity
of H3S was probed in a range of P using AC magnetic
susceptibility measurements. As P increases, the super-
conductivity appears at 117 GPa with a Tc of 38 K. The
critical temperature then increases to 183 K at 149 GPa before
decreasing to 140 K at 171 GPa. This nonmonotonic behavior
may come from the change in stoichiometry and the effects of
P on λ.
At first, the H2S compound might be involved in the

observation,99 but the predicted Tc of ≃80 K of H2S in this
pressure range267 is far from the measured data. Although the

reported pressure (155 GPa) is in the regime where the R3m
phase of H3S was predicted,82 the Im3̅m phase was
anticipated99 and then experimentally confirmed.190,235−237

The values of Tc that were computed82 and measured99 for
H3S at different pressures are summarized in Figure 3,
indicating an overall good agreement.

The discovery99 and confirmation234−237 of the super-
conductivity in H3S with a strikingly high Tc came soon after
the prediction.82 Moreover, the predicted superconducting
Im3̅m phase was confirmed, while the predicted Tc agrees well
with the measured values. These factors make the super-
conductivity of H3S a major discovery, sparking significant
excitement not only in the science community but also in
media and society.268

3.3. Lanthanum Hydride LaH10. The discovery of the
superconductivity in lanthanum hydride LaH10 was also
initiated by computational structure prediction endeavors. In
2017, dozens of clathrate-like structures of hydrides were
discovered computationally87,88 at high pressures with very
high predicted Tc values. In these prototype structures, rare-
earth elements like La and Y are located at the center of
hydrogen cavities, linked together throughout the space (see
Figures 6a and 7d for visualizations). Among the examined
rare-earth hydrides, LaH10 in its cubic Fm3̅m clathrate-like
structure was predicted to have an estimated Tc of ≃288 K at
200 GPa88 and a Tcof ≃274−286 K at 210 GPa.87 Quickly,

Figure 6. (a) Fm3̅m clathrate-like structure predicted for LaH10. (b) LaH10 samples fabricated and placed among four probes. (c) R−T dependence
measured for LaH10 samples at zero external magnetic field. (d) R−T dependence measured for LaH10 samples at varying external magnetic fields
of ≤9 T. (e) Magnetic response signals from LaH10 samples in a DAC, whose the background is shown as a dashed line. (f) Magnetic response after
the removal of the background signal. The inset of panel c shows the R−T curves measured for LaH10 and LaD10, which reveal the isotope effect.
Panel a, panels b−d, and panels e and f were reprinted with permission from ref 87 (Copyright 2017 National Academy of Sciences of the United
States of America), ref 101 (Copyright 2019 Springer Nature), and ref 238 (under a Creative Commons CC BY license), respectively.
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LaH10 was synthesized269 in the predicted Fm3̅m clathrate
structure at 170 GPa, the pressure at which it was predicted
computationally to be dynamically unstable.87 The small
discrepancy between computations and experiments was then
attributed to lattice vibrations,270 which had been neglected in
early computations.87 Nevertheless, the experimental synthesis
of LaH10 in the predicted structure is a success.
The superconductivity of LaH10 was observed in 2019.100,101

Superconducting-like decreases in measured electrical resist-
ance R of the synthesized samples were reported to be at a Tc
of ≃260 K under 180−200 GPa100 and a Tc of ≃250 K under
170 GPa,101 as shown in Figure 6c. In ref 101, the cubic Fm3̅m
structure of LaH10 was confirmed while other characteristics of
superconductivity, including the isotope effect, shown in the
inset of Figure 6c, and a decrease in Tc at increasing magnetic
fields, shown in Figure 6d, were also observed. By obtaining
the upper critical field as a function of T and fitting the data
into the Ginzburg−Landau model,7 Drozdov et al. extracted a
coherence length of approximately 1.56−1.86 nm.101 However,

magnetization measurements from the DAC cannot be
performed using SQUID because of the small volume and
size (10−20 μm) of the samples.

One year later, the synthesis of LaH10 was repeated.
238 The

samples are not larger, but using the pickup/compensating coil
technique, weak but measurable signals from magnetic
susceptibility measurements, as shown in Figure 6e, were
obtained.238 After the removal of the background, the final
data, shown in Figure 6f, point to superconducting transitions
at a Tc range of ≃250−280 K and a P range of ≃170−180
GPa.238 In 2021, the cubic Fm3̅m phase was confirmed again
while some other key superconducting characteristics such as
the upper critical fields and coherence lengths were
established.271

The clathrate structures realized in LaH10, in which the
hydrogen cavities are interconnected and distributed con-
tinuously throughout the space (see Figures 6a), allow for
unusually high hydrogen content. For that reason, it can be
viewed a close realization of metallic hydrogen, for which high

Figure 7. (a) R−T dependence measured for YH6 (166 GPa) and YD6 (172 GPa). (b) R−T dependence measured for YH6 (237 GPa) and YH9
(201 GPa). (c) XRD-resolved Im3̅m clathrate-like structure of YH6. (d) XRD-resolved P63/mmc clathrate-like structure of YH9. (e) P-dependent Tc
measured for YH6 and YH9 and R−T dependence measured for (f) YH6 and (g) YH9 at varying external magnetic fields. Panel a and panels b−g
were reprinted with permission from ref 104 (Copyright 2021 John Wiley and Sons) and ref 105 (under a Creative Commons CC BY license),
respectively.
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Tc values were predicted in 1968, also by Ashcroft.260

Remarkably, this host-atoms-in-hollows motif has been
predicted computationally75,81,86,88 and then realized exper-
imentally104,105 for many superconducting hydrides such as
YH6, YH9, CeH9, and CeH10, as discussed below. Some
computational works follow this promising lead, suggesting
even hydrogen-richer clathrate structures of superhydrides, e.g.,
LaH16,

272 LaH18, YH18, AcH18, CeH18, and ThH18,
228,273 with a

predicted Tc of ≳200 K.
3.4. Yttrium Hydrides YH6 and YH9. Yttrium hydrides

YH6 and YH9 are included in the list of 10 high-Tc
superconducting rare-earth hydrides, including LaH10, compu-
tationally predicted in 2017.88 The common feature of this
series is their clathrate-like structure, which, as mentioned
above, is interesting in the context of high-Tc super-
conductivity.75 The predicted Tc values of YH6 (in its cubic
Im3̅m phase) and YH9 (in its hexagonal P63/mmc phase) are
≃250 K at 120 GPa and ≃260 K at 150 GPa, respectively.88 In
fact, the cubic Im3̅m phase of YH6 was also predicted to be a
superconductor with a Tc of ≃251−264 K at 164 GPa in 2015
in a structure prediction campaign.86

The experimentally observed superconductivity of YH6 and
YH9 was reported in refs 104 and 105, both in 2021. First, YH6
was synthesized and observed in the predicted Im3̅m phase.104

Measured electrical resistance R, shown in Figure 7a, has a
superconducting-like decrease at a Tc of ≃224 K at 168 GPa.
The isotope effect was also observed, suggesting a link between
the superconductivity and the lattice phonons. This discovery
was reproduced in ref 105, in which a Tc of ≃220 K at 183 GPa
was reported for the Im3̅m phase of YH6, as shown in panels b,
c, and e of Figure 7. The superconductivity of YH9 in its
predicted hexagonal P63/mmc phase (see Figure 7d) was also
reported in ref 105, exhibiting a pressure-dependent Tc peaking
at ≃243 K at 201 GPa (see Figure 7e). The dependence of Tc
on the external magnetic field is shown in panels f and g of
Figure 7, pointing to an upper critical field and a coherence
length. Fitting the measured T-dependent upper critical fields
to the Ginzburg−Landaul7 and Werthamer−Helfand−Hohen-
berg258 models, we found coherence lengths at 0 K of YH6 and
YH9 of 1.45−1.75 and 2.3−2.7 nm, respectively.

The superconducting-like decreases in electrical resistance R,
the dependence of Tc on the external magnetic field, and the
atomic structure of both YH6 and YH9 were reproduced

Figure 8. (a) Predicted Fm3̅m structure of CeH10 and P63/mmc structure of CeH9. (b) R−T dependence measured for CeH9 and CeH10. (c) XRD-
resolved Fm3̅m structure of CeH10 and P63/mmc structure of CeH9. (d) R−T dependence measured for CeH9 and CeH10 at varying external
magnetic fields. (e) Confocal fluorescence image of CeH9 in which the diamagnet domains are brightly colored. Panels a−d and panel e were
reprinted with permission from ref 106 (Copyright 2021 American Physical Society) and ref 241 (Copyright 2024 Springer Nature), respectively.
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recently.240 Nevertheless, magnetic susceptibility measure-
ments have not been reported thus far, perhaps because of
known technical challenges. In this context, emerging
techniques for visualizing the local domain of diamagnetism241

or measuring the trapped flux259 could be useful, as
demonstrated241 for CeH9 and mentioned in section 3.5.
3.5. Cerium Hydrides CeH9 and CeH10. Similar to LaH10,

YH6, and YH9, CeH9 and CeH10 are also in the series of rare-
earth hydrides predicted in ref 88. The predicted structures of
CeH9 and CeH10, visualized in Figure 8a, are both clathrate-
like and belong to the P63/mmc and Fm3̅m space groups,
respectively. Although the predicted Tc of CeH9 and CeH10 is
lower than others, i.e., ≃50−60 K, the pressure at which the
superconductivity was predicted is relatively lower, i.e., 100
GPa for CeH9 and 200 GPa for CeH10.

88 Given that the
superconductivity of H3S, LaH10, YH6, and YH9 was reported
to be close to 200 GPa, this prediction stimulates some
interest. Amid the search, CeH9 was synthesized,

274 confirming
the predicted P63/mmc phase. A structure prediction campaign
was then launched,274 recovering the predicted P63/mmc and
Fm3̅m phases of CeH9 and CeH10, respectively. Calculations
performed return a λ of 2.3 and an ωlog of 740 K for the P63/
mmc phase of CeH9 at 200 GPa, which were translated to a Tc
of 105−117 K using the McMillan formula with a μ* of 0.10−
0.13.274

In 2021, the superconductivity of CeH9 and CeH10 was
reported at 88 and 95 GPa, respectively.106 The critical
temperature, extracted from measured electrical resistance R
(shown in Figure 8b), is 57 K for CeH9 and 115 K for
CeH10.

106 The P63/mmc phase of CeH9 is predominant in the
synthesized samples, while CeH10 in its Fm3̅m phase plays a
minor role, as shown in Figure 8c. Using the Ginzburg−
Landau7 and Werthamer−Helfand−Hohenberg258 models for
the measured magnetic field-dependent Tc data (see Figure
8d), the upper critical field at 0 K of CeH9 was estimated to be
17.7−22.9 T at 140 GPa while the coherence length is 3.4 nm
at 120 GPa, 4.3 nm at 150 GPa, and 5.1 nm at 150 GPa.106 An
isotope effect was observed for CeH9,

106 but no magnetic
susceptibility measurements were reported.
Recently, local diamagnetic domains of CeH9 were

observed241 using a new technique that can perform local
magnetometry with submicrometer spatial resolution inside a
DAC.241 These domains, brightly colored in Figure 8e, are
∼10 μm in size and small for SQUID. This result is intriguing,
suggesting that the new technique would be useful for probing
the superconductivity in small samples, the scenario that is
common in superconductor discovery.101

4. MATERIALS INFORMATICS IN SUPERCONDUCTOR
DISCOVERY

Emerging in the early 2010s and partly driven by the Materials
Genome Initiative,275 materials informatics has rapidly
developed into a widely used tool in materials research.119−126

This approach employs AI/ML techniques to learn materials
data, creating models that can generate rapid predictions and
complement traditional approaches in accelerating materials
discovery. Synergetic approaches involving materials infor-
matics methods, simulations, and physical experimentations
have proactively driven numerous recent materials discoveries.
Many of these newly discovered materials have been
synthesized and tested. Notable examples include battery
materials,199 green energy materials,200 functional and
sustainable polymers,201 alloys,202,203 and more.

Data are the cornerstone of materials informatics. In this
field, data can originate from different sources such as
experimental measurements and/or physics-based computa-
tions, be represented in different formats, contain different
amounts and details of information, and possess different levels
of fidelity. An ideal data set for ML model training should be
sufficiently large, diverse in the chemical, configuration, and
parameter spaces, and complete in terms of the relevant
information. The development of major DFT-based materials
databases like Materials Project,276 OQMD,277 AFLOWL-
IB,278 and NOMAD122,123 is important for the future progress
of materials informatics.

For problems related to superconductivity, a typical model
development procedure, sketched in Figure 9, starts with

collecting and preparing training data for related materials.
These data include both the structural information of the
materials and the target labels or properties of interest. In a
next step, the materials, represented by their chemical formulas
or atomic structures, are converted into numerical “hand-
crafted” features that can be readily interpreted and utilized by
ML algorithms.119,125,126 This step is required from the early
days of materials informatics, but recent advances in deep-
learning techniques138,139,279−285 signal that the materials
features may also be “learned”. Subsequently, a suitable ML
algorithm learns the features, establishing a clustering,
classification, or regression model capable of rapidly predicting
or evaluating new materials.

As the model input, a chemical formula inherently provides
less detailed information than a fully specified atomic structure.
On the spectrum of information completeness, as previously
discussed286 and sketched in Figure 9, the information content
of a chemical formula is lower than that of an atomic structure.
From the physics standpoint, each formula corresponds to an
infinite number of metastable atomic structures (local minima
on the PES).212 Many of these structures may be energetically
close to the global minimum, implying that they can be
stabilized in experiments or appear in computational models.
Importantly, these low-energy structures may have completely
different atomic arrangements and properties, e.g., with one
being insulating and another conducting.287 Superconductivity,
as discussed in section 2.1, is highly sensitive to the atomic
arrangements. Thus, describing a superconductor by only its
chemical formula entails the risk of inaccurate results.
Eventually, models relying on only formulas as inputs
inevitably encounter a degree of irreducible (aleatoric)
uncertainty in their predictions that cannot be simply reduced
by increasing the amount of data.286,288 As early super-
conductor databases provide only chemical formulas, recent
efforts to introduce atomic details, as discussed in section 4.1,
have become a focal point of research.

Figure 9. Widely adopted schematic pipeline for ML predictive
models of superconductivity.
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Extending some previous discussions,142,157 one can
categorize materials informatics efforts in superconductor
discovery into five groups. The first group (i) includes those

fully devoted to160−165 or partially involved in136,137,140−142

data generation, extraction, and dissemination. The other
groups are (ii) classifying superconductors,135,137,159 (iii)

Table 2. Summary of the Currently Available Databases of Superconductors That Have Been or Can Be Used for Machine-
Learning Techniques

name description URL (https://+) refs

NIMS
SuperCon

≃31 000 records of chemical formula and Tc at 0 GPa supercon.nims.go.jp/index_en.html

MDR
SuperCon

originated from NIMS SuperCon, 26 323 records of chemical formula and Tc at 0 GPa mdr.nims.go.jp/collections/5712mb227

SuperCon originated from NIMS SuperCon, 16 400 records of chemical formula and Tc at 0 GPa github.com/vstanev1/Supercon 136,
137

3DSCICSD 9150 records of atomic structure at 0 GPa (from ICSD) “matched” with experimental Tc
(from NIMS SuperCon) via chemical formula; license needed for ICSD

github.com/aimat-lab/3DSC 165

3DSCMP 5759 records of atomic structure at 0 GPa (from Materials Project) “matched” with
experimental Tc (from NIMS SuperCon) via chemical formula

github.com/aimat-lab/3DSC 165

Jarvis_EPC 626 records of atomic structure and λ and ωlog, computed at 0 GPa using DFPT doi.org/10.6084/m9.figshare.21370572 140
N/A ≃7000 records of atomic structure and λ and ωlog, computed at 0 GPa using DFPT 141
CompSC 587 atomic structures for which 584 values of λ and 567 values of ωlog were computed at

≤500 GPa; data from literature, reoptimized using DFT, and validated visually
github.com/huantd/matsdata 142

SC-CoMIcs 1000 annotated abstracts, developed and tailored for extracting superconductivity-related
information, e.g., using NLP

data.mendeley.com/data-sets/
xc9fjz2p3h/2 github.com/tti-coin/sc-
comics

160,
161

SuperMat 142 articles, 16 052 entities, and 1398 links, for NLP github.com/lfoppiano/SuperMat 163
SuperCon2 40 324 records of superconductors, Tc, applied pressure, measurement method github.com/lfoppiano/supercon 164

Figure 10. Workflows used to develop (a) 3DSCICSD and 3DSCMP and (c) Jarvis_EPC, three data sets of superconductivity-related parameters
and atomic structures. A summary of 3DSCICSD and 3DSCMP is given in panel b. Panels a and b and panel c were taken from ref 165 (under a
Creative Commons CC BY license) and ref 140 (under a Creative Commons CC BY license), respectively.
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predicting superconducting-related properties,136,137,139−148

(iv) accelerating the structure prediction step with ML
potentials,127−129 and (v) refining empirical formulas for
Tc.

133,134,148 Groups iii−v are sketched in Figure 2. Due to
the integrated nature of the materials informatics approaches,
the availability of the data, and specifically the forward-looking
aspiration of the field, subsequent discussions in this section
will involve all classes of superconductors, including those
mediated by phonons. The current status, challenges, and
critical next steps of the materials informatics efforts in
superconductor discovery will be discussed in section 5.
4.1. Data Generation, Extraction, and Dissemination.

The Superconducting Material Database maintained by Japan’s
National Institute for Materials Science (NIMS) provides data
for many efforts in the field.135−137,159 This database, named
NIMS SuperCon, records the chemical formula of ∼32 000
known conventional (phonon-mediated) and unconventional
superconductors; not all of them have (measured) Tc values
included. Recently, NIMS SuperCon was cleaned, re-edited,
and released as MDR SuperCon, containing 26 323 records.
Parallel cleaning and curation efforts136,137 resulted in another
version, presently known as SuperCon, containing ∼16 400
records; among them, 4000 records have no Tc values. Details
about NIMS SuperCon, MDR SuperCon, and SuperCon
are listed in Table 2.
Some approaches were used to introduce atomic-level

information. First, the chemical formula of superconductors
are looked up in the available databases like ICSD289 and
Materials Project276 for the most reasonable struc-
tures.135,137,143 Figure 10a details the procedure165 used to
create 3DSCICSD and 3DSCMP, two superconductor data sets
in which the Tc from NIMS SuperCon is paired with the
atomic structures from ICSD and Materials Project by
matching the chemical formula. In this procedure, an “artificial
doping” step was used to obtain complete matches in the
chemical formula from “nearly complete” matches. A summary
of 3DSCICSD and 3DSCMP is given in Figure 10b.
In the second approach, superconductivity-related parame-

ters such as α2F(ω), λ, ωlog, and Tc are computed (see section
2.2) for the atomic structures obtained from existing databases
and/or predicted computationally.140,141,148 JARVIS-EPC is
a data set generated140 using such a computationally
demanding approach (its technical details are shown in Figure
10c). Starting from JARVIS-DFT, a database of 55 645
materials, screening steps involving some accessible data, e.g.,
debye temperature and NF, were used.

140 Then, α2F(ω), λ, and
ωlog were computed for 1058 materials, identifying 626
dynamically stable structures; 105 of them have McMillan Tc
values of ≥5 K. More recently, a data set of >7000 records of
atomic structures and their computed λ, ωlog, and Tc values
were obtained in a ML-driven computational discovery effort,
whose workflow is shown in Figure 14e.141 The two
computational data sets are summarized in Table 2.
The third approach is inspired by the presence of thousands

of computational reports for possible superconductivity at
multiple ranges of pressure. Most of them start from the
atomic structures predicted computationally, thus being highly
expensive and trustworthy. The main challenge in this
approach is how to collect and validate the literature data in
a reliable and scalable manner. In an initial effort, a few
hundred atomic structures and their λ and ωlog values,
computed at pressures of ≤500 GPa, were manually
collected.142 The curation involves constructing the reported

atomic structures, uniformly optimizing them using DFT, and
inspecting them visually. Resulting data set CompSC,
summarized in Table 2, contains 587 atomic structures for
which 584 values of computed λ and 567 values of computed
ωlog are available.142 This approach can create a reliable and
highly diverse data but is laborious and obviously unscalable.

Using natural language processing (NLP) tools to automati-
cally extract superconductor-related data from scientific
literature, a largely unexplored data reservoir, is more scalable
and sustainable. This approach has emerged and recently
gained some momentum.160−164 SC-CoMIcs is a corpus of
1000 annotated abstracts, created160,161 for extracting super-
conductivity-related information using NLP-based tools like
named entity recognition (NER). Beyond abstracts, Super-
Mat is an annotated corpus, supplying 142 full texts, which
contain 16 052 entities and 1398 links.163 Such efforts were
further elevated to Grobid-superconductors, a
module designed to automatically extract superconductor
names and properties from text, and finally to SuperCon2,
a database containing 40 324 records of superconductor
chemical formulas, Tc values, applied pressures, and measure-
ment methods.164

4.2. Categorizing Superconductors from Data. The
developed databases could be useful for two categorical
questions: (1) whether a material is a superconductor and
(2) if yes, what class, e.g., cuprates and iron-based, to which it
belongs. In an endeavor to address the first question,
SuperCon (with 16 400 records) was augmented by 300
materials found50 to be nonsuperconducting. For these
materials, the Tc was set to zero.137 Then, an adjustable
parameter Tsep was introduced to separate the combined data
set into two groups. The “below-Tsep” group includes the
nonsuperconductors (Tc = 0 K), ≃4000 records without Tc
values, and those for which Tc < Tsep, while the “above-Tsep”
group hosts records for which Tc ≥ Tsep. By using the Magpie
features290 for chemical formulas, setting Tsep = 10 K, and
employing the Random Forest algorithm,291 the classification
model developed, shown in Figure 11a, can reach an accuracy
of ≃92%.137

Upon inclusion of nonsuperconducting materials in the
“below-Tsep” group, the problem of superconductor recog-
nition was just partially addressed.137 The reason is that Tc is
not the only measurable characteristic of a superconductor but
is the only superconductivity-related property available in
NIMS SuperCon. Moreover, as Tc may be arbitrarily low,53

some materials currently classified as nonsuperconducting may
be discovered to exhibit superconductivity as technological
advancements enable us to probe lower temperature regimes.
An example of such a (very rare) finding is the discovery of
superconductivity in elemental Li below 4 × 10−3 K,292 despite
a long-standing belief that Li would not exhibit super-
conductivity.293,294

In fact, the first attempt to categorize superconductors on
the basis of Tc emerged slightly earlier, starting from ≃700
chemical formula−Tc records collected from the literature,
handbooks, and NIMS SuperCon.135 The chemical formulas
were then matched with suitable atomic structures in
AFLOWLIB,278 creating a data set of 464 structure−Tc records.
The data were featurized by SiRMS, a fragment-based Simplex
representation,295 before being learned using the Random
Forest algorithm. When temperature separator Tsep was set to
20 K, an accuracy of ≃0.97 was searched by the obtained
classification model, as visualized in Figure 11b.
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In an effort to distinguish superconductors from non-
superconductors, NIMS SuperCon was cleaned and
augmented by 3000 nonsuperconducting materials, including
insulators, semiconductors, and metals.158 Then, each chemical
formula was represented by a row vector formed by the
composition (contribution) of the constituent species. These
vectors were aggregated in a chemical composition matrix that
has 96 columns for 96 available species and ≃30 000 rows for
the data set size. Figure 11c shows that the classification model
trained using the k-Nearest Neighbors algorithm performs very
well158 with an overall accuracy of ≃96%. It is worth noting
that the augmented 3000 materials were assumed158 to be
nonsuperconductors, skipping the aforementioned small
possibility that some (metals) of them may be superconductors
at very low temperatures.
The second question involves recognizing superconductors

of different classes, i.e., those governed by different pairing
mechanisms. To address this problem, NIMS SuperCon was
cleaned and represented159 by the chemical composition
matrix.158 Several clustering algorithms were tested before Self-
Organizing Map296 was selected. Figure 11d shows the t-
distributed Stochastic Neighbor Embedding (t-SNE)297 of
4500 superconductors randomly selected from SuperCon, in
which iron-based compounds, cuprates, and those in other
classes are distinguished.159 It seems that data, when curated
and learned properly, could be useful for recognizing a
superconductor and the governing mechanism, if applicable.

4.3. Predicting Superconducting-Related Properties.
ML efforts in this class aim to accelerate the predictions of
superconducting-related properties such as Tc, traditionally
obtained by expensive computations (section 2.2) and/or
physical measurements (section 2.4). The critical role of NIMS
SuperCon and its descendants, evidenced in section 4.2, is
also visible here. In fact, most of the works aiming at predicting
Tc from the chemical formula rely on NIMS SuperCon.
Efforts to introduce atomic-level information into the
developent of ML models for λ and ωlog have emerged
recently. This section is devoted to not only the ML efforts in
the two subcategories but also the ML-driven searches for
superconductors. An in-depth discussion of the remaining
challenges and opportunities of ML efforts in this class is given
in section 5.2.2.
4.3.1. Predictions from Chemical Formula. In an early ML

work starting from NIMS SuperCon, a data set of 21 263
records was curated, containing multiple classes of super-
conductors.136 For each material, the chemical formula was
featurized by some simple functions, e.g., mean, weighted
mean, entropy, etc., of the basic properties of the constituent
species, e.g., atomic mass, electron affinity, etc. Some
algorithms were tested, and XGBoost298 was selected. The
developed ML model for Tc with an averaged out-of-sample
error of ≃9.5 K is visualized in Figure 12a.136

Following the classification between low-Tc and high-Tc
superconductors, Tc predictive models were developed for

Figure 11. (a) Four accuracy-related scores of the superconductor/
nonsuperconductor classification model. (b) Predictions of a
classification model (colored red and green) and a regression model
(given on the y-axis) on a data set of 464 structure−Tc records. (c)
Confusion matrix for the classification model for superconductors that
can reach an accuracy of 96.5%. (d) t-SNE plot of 4500 randomly
selected superconductors from SuperCon, showing distinct clusters
for different classes of superconductors. Panels a−d were reprinted
with permission from ref 137 (under a Creative Commons CC BY
license), ref 135 (Copyright 2015 American Chemical Society), ref
158 (Copyright 2020 Elsevier), and ref 159 (Copyright 2022
Elsevier), respectively.

Figure 12. (a and b) Two ML models for predicting Tc from chemical
formula. (c) Fully connected neural network created to predict Tc and
P from chemical formula. (d) Atom table convolutional neural
network used to train the ML predictive model for Tc on the data sets
whose chemical formulas are represented as 10 × 10 images. Panels
a−d were reprinted with permission from ref 136 (Copyright 2018
Elsevier), ref 137 (under a Creative Commons CC BY license), ref
147 (Copyright 2020 American Physical Society), and ref 138 (under
a Creative Commons CC BY license), respectively.
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the high-Tc group.
137 The materials data were represented by

Magpie (composition) features290 and learned by the Random
Forest (regression) algorithm. One of the models developed is
visualized in Figure 12b, showing the performance on low-Tc,
Fe-based, and cuprate superconductors with a coefficient of
determination (R2) of ≃0.88.137 Screening the ICSD database
by a combination of a classification and a regression model
identified ≃2000 materials with predicted Tc values of >20 K at
0 GPa.137 While most of them contain copper and oxygen, i.e.,
they may be related to cuprates, a subset of 35 materials
without obvious connection to known high-Tc families was
compiled and reported.137

Roughly 2000 records of AlB2-, Chevrel-, Cr3Si-, spinel-,
NaCl-, and skutterudite-type superconductors were extracted
from NIMS SuperCon and augmented with elemental
superconductors.144 This data set was believed to include
phonon-mediated superconductors, for which MgB2

47 is the
highest-Tc material; the averaged Tc of MgB2 in this data set is
38.6 K. Featurizing the data by some simple functions of the
fundamental attributes of existing species, the trained Random
Forest model could reach an R2 of 0.98 on the training data
(80% of the data set) and an R2 of 0.92 on the test data (the
remaining 20% of the data set). This model was used to create
the predicted Tc map for three families of ternary materials,
namely, Mg−B−Ti, Fe−Te−Se, and Ca−B−C. In the Mg−B−
Ti map, the region containing MgB2 was predicted to exhibit
the highest Tc values, while in the Fe−Te−Se map, the high Tc
was predicted along the line connecting FeTe and FeSe.144 For
the Ca−B−C system, materials with formula close to CaB6 and
B13C2 were also predicted144 to exhibit high Tc values.
Focusing on the recent discoveries, a few hundred binary

hydride superconductors EHn were collected from the
literature.147 For each material, its chemical formula, Tc, and
pressure at which superconductivity was predicted are
available. A set of features, including hydrogen content n and
some fundamental attributes of species E such as the atomic
number, the van der Waals radius, and the electron
configurations of E, was used to describe EHn. The featurized
data were then fed into a fully connected neural network, as
visualized in Figure 12c, whose output layer has two nodes,
one for Tc and the other for P. This network is an example of a
multitask learning architecture, which can be trained with
multiple data sets to exploit the hidden correlations among
them and leverage the performance.288,299,300 The Tc
predictivity of the model reaches an R2 of 0.88 with a root-
mean-square error (RMSE) of ≃33.7 K for Tc predictions.
Nevertheless, the main objective of the developed neural

network model is to screen over the periodic table for the
species E that minimize the “distance” from the predicted Tc
and P to the ambient conditions, i.e., 0 GPa and 293 K.147 The
analysis suggests that alkali- and alkaline-earth metal hydrides
could be the best candidates for superconductivity near
ambient conditions. Next, the AIRSS method222 was used,
identifying dozens of atomic structures of alkali- and alkaline-
earth metal hydrides with respectable computed Tc values.
Specifically for the predicted C2/m, Cmcm, and Immm phases
of RbH12, the computed Tc could be as high as 126 K at ≤100
GPa.147

Materials informatics endeavors relying on NIMS Super-
Con were extended into the deep-learning territory, where
high-level features may be learned directly from raw data. In
the atom table Convolutional Neural Network (ATCNN),138

each chemical formula was represented by an image of 10 × 10

pixels, visualized at the left end of Figure 12d. Each pixel
corresponds to a species, and its value is the composition
(contribution) of this species in the chemical formula. As there
are 86 species that appear in the data set, 10 × 10 = 100 pixels
is sufficient for the representation. Then, the “atom tables” are
accepted by an architecture, sketched in Figure 12d, which
consists of several convolutional layers to process the
images.138 Two models for Tc, i.e., ATCNN-I and ATCNN-
II, were developed, one trained on a cleaned version of NIMS
SuperCon containing 13 598 records and the other trained
on the same data set after being augmented by 9399
energetically stable insulators, the obvious nonsuperconduc-
tors. Both models show good performance with a mean
absolute error (MAE) of ≃4.2 K, a RMSE of ≃8.2 K, and an R2

of ≃0.97. Compared to the measured Tc values of some well-
known superconductors such as Hg, MgB2, and YBa2Cu3O7,
the predictions of these two models are accurate.138

The idea of using a convolutional neural network (CNN)
architecture in superconductor discovery has evolved from
recognizing “atom tables”138 to “reading periodic tables”.139 In
the latter, the species composition of each superconductor in
NIMS SuperCond is “written” directly to the periodic table.
Then, the table was separated into four “channels” for
recording those with s, p, d, and f valence electrons. A CNN
was trained on 95% of NIMS SuperCond and tested on the
remaining 5% of the data, yielding an R2 of 0.92 in Tc
predictions.139 This model predicts ∼17 000 materials (of
∼48 000 records) in Crystallography Open Database
(COD)301 to have Tc values of >10 K. The obtained result
is unreasonable, perhaps because the training data have almost
no nonsuperconductors. After it is augmented by a synthetic
data set of nonsuperconductors (assumed Tc = 0 K), the final
(new) model becomes more reliable. Testing on 400 materials
(including 330 nonsuperconductors) reported in ref 50, the
model reaches a precision of 62%, an accuracy of 76%, a recall
of 67%, and an f1 score of 63% in predicting materials with Tc
values of >0 K. Using it for COD, 70 materials, including CaBi2
and Hf0.5Nb0.2V2Zr0.3 (both are not in NIMS SuperCond),
were predicted to have Tc values of >10 K. One of them,
CaBi2, is indeed a superconductor.302

We close this section by noting the connection from the
“atom table” and the “periodic table” in these CNN approaches
to the chemical composition row vector158 discussed in section
4.2. In particular, the former is the latter rearranged in a two-
dimensional image so that it can be used in a CNN
architecture. The main information encoded in these images
is the composition of the constituent species, the highest level
of information that can be extrated from a chemical formula.
4.3.2. Predictions from Atomic Structure. In fact, attempts

to introduce atomic-level details into ML models for Tc
emerged quite early.135 By matching ≃700 formulas collected
for superconductors with AFLOWLIB and excluding those for
which Tc < 2 K, we obtained a data set of 295 atomic
structure−Tc records. The atomic structures were represented
using SiRMS295 before being mapped onto Tc by Random
Forest and Partial Least Squares303 algorithms. The obtained
models for Tc could reach an R2 of ≃0.66, and one of them is
shown in Figure 11b. As SiRMS is a fragment-based
representation,295 an analysis was performed, compiling a
catalog of fragments that may likely present in materials with
low and high values of Tc.

135

An atomic structure matching procedure was also used in ref
143. Upon examination of the ICSD database for which atomic
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structures are available, ≃1700 superconductors were obtained.
Next, by identifying suitable (close-matched) structures and
“doping” them to recover the chemical formulas in NIMS
SuperCon, Zhang et al.143 finally obtained a data set of 5713
atomic structure−Tc records. Then, the atomic structures were
featurized using the “Smooth Overlap of Atomic Position′’
(SOAP) scheme.304 Finally, three models were trained used
Random Forest, XGBoost, and Support Vector Regression.305

One of them, the Random Forest regression model with an R2

of ≃0.92, is visualized in Figure 13a.143 These models were
used to screen over the ICSD database, compiling the 10 most
promising superconductors whose averaged Tc (predicted by
three models) is at least ≃20 K at 0 GPa.143 Among them,
Ba4Ca4Cu6O19Tl3 was predicted to have a Tc of ≃103 K.143

Starting from JARVIS-EPC, two learning methods were
used to develop predictive models for λ, ωlog, and Tc.

140 The
first relies on some force field-inspired features and the
Gradient Boosting Decision tree algorithm.306 The second,
termed “Atomistic Line Graph Neural Network” (ALIGNN),
is a deep-learning architecture, in which a graph convolutional
layer was designed to describe two- and three-body
interactions among the atoms of an atomic structure.307 Panels
b−d of Figure 13 visualize three ALIGNN models140 trained
on JARVIS-EPC to predict λ, ωlog, and Tc, respectively.
Two ML models trained142 on CompSC to predict λ and

ωlog are shown in panels e and f, respectively, of Figure 13. In
this work, the atomic structures predicted at pressures of ≤500
GPa and reported in the literature were collected, uniformly
reoptimized, visually validated, represented using MATMINER,308

and learned using the Gaussian Process Regression (GPR)
algorithm.309,310 The training data are highly diverse,
containing numerous (“unusual”) atomic details realized at
different pressures and computationally linked to the values of
λ and ωlog that lead to high values of Tc. Therefore, the models
are expected to be capable of recognizing at any P, including 0
GPa, the atomic structures that resemble the “unusual” atomic-
level details to which they were exposed.142 Using these
models to screen the hydrides from the Materials Project
database, an Fm3̅m structure of CrH and another Fm3̅m
structure of CrH2 were identified with computed Tc values of
15.7 and 10.7 K, respectively, at 0 GPa.142

4.3.3. ML-Driven Search for High-Tc Superconductors. An
efficient materials discovery strategy, even powered by ML
models, should be target-driven, extending beyond a brute-
force screening, as discussed in section 2.3. One such workflow
was developed,146 utilizing an evolutionary algorithm and a
GPR model to discover hydrogen-containing superconductors.
In this ML-driven strategy, visualized in Figure 14a, mating and
mutation operate directly on the atomic structures while the
space group, hydrogen concentration, atomic mass, pressure,
and μ* were used as descriptors to train the GPR model.146

With new candidates, new data are computed, the ML model is
retrained, and the workflow cycles. Some hydride super-
conductors were discovered, including a C2/m structure of
KScH12 with a computed Tc of 122 K at 300 GPa and a Pm3̅
structure of GaAsH6, as shown in Figure 14b, with a computed
Tc of 98 K at 180 GPa.

Figure 13. Six ML predictive models starting from atomic structures to predict (a and d) Tc, (b and e) λ, and (c and f) ωlog. Panel a, panels b−d,
and panels e and f were reprinted with permission from ref 143 (Copyright 2019 American Chemical Society), ref 140 (under a Creative Commons
CC BY license), and ref 142 (Copyright 2023 American Physical Society), respectively.
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Another ML-powered discovery strategy for hydride super-
conductors was recently developed148 and is visualized in
Figure 14c. In this procedure, the GPR model was trained on
some formula-based features like the Gaspari−Gyorffy
electron−phonon coupling estimates of available species, the
atomic mass of non-hydrogen species, and NF; all of them were
normalized appropriately. In this strategy, the atomic structures
of the formula candidates were searched using AIRSS,222 and
as the workflow cycles, 27 new superconductors were
discovered at pressures of ≤500 GPa. Among them, NaH6,
shown in Figure 14d, was predicted to have a Tc in the range of
228−279 K at 100 GPa.148

Figure 14e visualizes the workflow used to create the data set
of ≃7000 records discussed in section 4.1 and summarized in
Table 2.141 In this workflow, a deep-learning model trained on
a “Material Optimal Descriptor Network”, or MODNet,311 was
used to select candidates from the Alexandria database312 for λ,
ωlog, and Tc computations. MODNet accepts features
computed using MATMINER

308 for the atomic structures before
passing them through a series of successive blocks for feature

selection, encoding, decoding, and splitting to learn multiple
properties concurrently. Among ≃7000 data records produced
using this workflow, 541 materials with Tc values of >10 K (at
0 GPa) were identified. Two of them, a Pm3̅n structure of
Ti3Te (computed Tc of 16.3 K) and a Pm3̅m structure of
KCdH3 (computed Tc of 12.3 K), are visualized in Figure
14f.141

4.4. Accelerated Structural Prediction with ML
Potentials. In the computational discovery workflow
discussed in section 2.3, the structure prediction step is
computationally very demanding. For each chemical formula,
hundreds of thousands of energy evaluations are typically
needed to search for its stable atomic structures, and they must
be performed at a first-principles level. The development of
ML potentials,313 mostly in the context of molecular dynamics
(MD) simulations, offers an approach for accelerating this step.
A ML potential is a ML model, generally based on a neural
network, accepting an atomic structure and returning its
potential energy faster than a normal DFT calculation by
multiple orders of magnitude. State-of-the-art ML potentials

Figure 14. (a) Discovery loop using a ML predictive model to search for high-Tc superconductors. (b) The atomic structure of GaAsH6 discovered
using the strategy (a). (c) A ML-driven strategy for superconductor discovery, (d) the atomic structure of discovered NaH6 at 100 GPa using the
strategy visualized in (c). (e) A ML-driven workflow to search for superconductors and generate a significant volume of computed data. (f) The
atomic structure discivered for Ti3Te and KCdH3 using the workflow in (e). Panels a and b, panels c and d, and panels e and f were taken from ref
146 (under a Creative Commons Attribution 4.0 International license), ref 148 (Copyright 2021 American Physical Society), and ref 141
(Copyright 2024 John Wiley and Sons), respectively.
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such as the Gaussian Approximation Potential (GAP),314,315

Spectral Neighbor Analysis Potential (SNAP),316,317 Moment
Tensor Potentials (MTP),318,319 and Deep Potential,320

trained on millions of atomic environments, are expected to
be comparable with DFT in terms of accuracy, i.e., a few
millielectronvolts per atom. However, like any ML models,
out-of-domain energy predictions (on unseen atomic environ-
ments) should be treated with care. In superconductor
discovery, ML potentials started leaving discernible
trails.127−129,131,132

A reliable atomic structure predicted computationally should
be thermodynamically, dynamically, and kinetically stable. In
the context of superconductor discovery, the dynamical
stability of a structure, i.e., whether it is a local minimum,
not a saddle point of the PES, can be accessed during the
calculations of spectral function α2F(ω) using DFPT.
Examining the kinetic stability of a structure, i.e., if the kinetic
(energy) barrier protecting this local minimum is high enough
so that its lifetime could be reasonable, is much harder than
inspecting its thermodynamic stability. The reason is that the
former is nonlocal in nature, especially when the configuration
space is extremely high in dimensionality, which is ∼3 times
the system size, i.e., on the order of 102.
In most cases, ML potentials were used to accelerate the

energy evaluations during the search; i.e., their role is on the
side of thermodynamic stability. Some results of these efforts
are the discoveries at 0 GPa of C4K (in P4/mmm symmetry
with a predicted Tc of 30.4 K),127 c-B24 (in Pm3̅ symmetry with
a predicted Tc of 13.8 K),128 and Mg2IrH6 (in Fm3̅m symmetry
with a predicted Tc of 160 K).129 At a slightly higher pressure
(20 GPa), a series of 14 La−N−H trinary materials were
predicted with support from the universal neural network
potential developed by MATLANTIS.321 Upon examination of
their possible superconductivity by DFPT calculations,130 the
predicted Tc of this series spans from 0.49 to 14.41 K. In
another interesting effort,131 ephemeral data-derived (ML)
potentials322 were used in a large-scale structure prediction
campaign, which ended up disproving an early claim of
ambient-condition superconductivity in the Lu−N−H systems.
Compared with positive conclusions, such a negative
conclusion requires much more computational effort because
all of the attainable possibilities, e.g., chemical formulas and
system sizes, should be considered. ML potentials are
particularly useful for this purpose.
ML potentials have also been used to accelerate the

examination of the kinetic stability, which connects with
kinetic barriers. A typical approach is to perform long first-
principles MD simulations at and above room temperature to
examine the stability of the long-range order against increased
thermal energies.127 Directly accessing the kinetic barriers, e.g.,
using stochastic self-consistent harmonic approximation,
requires sufficiently large supercells and numerous randomly
displaced structures.132 With help from MTP, such a
computationally expensive analysis was completed, suggesting
the stability of the Fm3̅m phase of BaSiH8, whose predicted Tc
is ∼90 K.132

4.5. Refining Empirical Formulas for Tc. The empirical
McMillan formula (eq 8) of Tc was developed170 and
refined171,172 by “manually learning” small data sets generated
from the Éliashberg equations. This formula, and some other
variants, are particularly useful in the search for new
superconductors. Recent ideas133,134 have suggested that
these formulas may be refined further using advanced symbolic

ML techniques and larger data sets of the solutions of the
Éliashberg equations, which become available thanks to new
generations of computational infrastructures.

One such symbolic ML technique is “Sure Independence
Screening and Sparsifying Operator” (SISSO).323 By defining
some physically meaningful operators and functions of the
primary variables, which are λ, ωlog, and μ*, it generated
millions of features (expressions). Training a linear regression
model using these features with L0 regularization afforded
some expressions for Tc; among them, the simplest version
is133

T 0.0953c

4
log

3
=

+ * (10)

In a subsequent effort,134 a modified version of the McMillan
formula (eq 8) was assumed as
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Likewise, data obtained from the ML-powered discovery
strategy developed148 for hydride superconductors offer an
opportunity to test and improve the McMillan formula (eq 8).
Assuming
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data fitting yields an a of 1.0061 and a b of 0.0663,148 slightly
modifying the McMillan formula (eq 8).

5. CHALLENGES, OPPORTUNITIES, AND CRITICAL
NEXT STEPS
5.1. Theoretical and Computational Methods. Despite

thousands of computational discoveries reported in the past
two decades, only approximately 20−30 materials were
synthesized and reported. This small fraction (≲1%) may
suggest that we simply do not have a “silver bullet” for such a
tough problem like understanding, predicting, and discovering
superconductivity. In the future, this situation may change, but
some major challenges must be resolved. Apparently, phonon-
mediated pairing is one of many mechanisms proposed for
superconductivity, and an exact and/or well-controlled theory
for this mechanism is not readily available. It is known that
Migdal−Éliashberg theory may become inaccurate,173−178 and
one reason could be the fact that it accounts for only the first
order of vertex corrections.21 Challenges in pushing the
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theoretical front in superconductivity understanding are
obviously enormous.
In the computational front, two major steps of the workflow

discussed in section 2.3, namely the atomic structure
prediction and the computations of α2F(ω), λ, and ωlog, are
highly nontrivial. The former faces truly infinite, extremely
high-dimensional configuration spaces. For the latter, implica-
tions of the possible breakdown of Migdal−Éliashberg theory
have not been well understood while the desirable accuracy
and convergence are hard to control and obtain.140−142,148

Technically, even a numerical error that is comparable with the
best attainable level of accuracy, i.e., approximately 10−4 to
10−3 eV/Å in the atomic force calculations, could be translated
into a sizable change in the computed phonon frequencies and,
thus, in the superconductivity-related properties.
For a more quantitative assessment, we show in Figure 15

some computed and measured data of Tc of some notable

superconductors, obtained from the same atomic structure
under the same pressure. Four materials with the highest Tc
shown in this figure are MgB2 at ambient pressure,47,166,324−328

H3S at 200 GPa,99,190 YH6 at 166 GPa,104 and LaYH20 at 180
GPa.211 For each of them, multiple computational schemes
were used, involving different values of μ* and whether
anharmonicity is included. These empirical treatments allow
the computed Tc to spread over a sizable range, i.e., ≃29 K for
MgB2, ≃125 K for H3S, ≃100 K for YH6, and ≃70 K for
LaYH20. Considering the significant challenges in both
experimental and computational techniques, the moderate
agreement is reasonable and understandable, highlighting
important cautions for future works.
Some emerging techniques may be useful for these

challenges. Given that the atomic structure predictions can

be effectively coupled with powerful ML potentials,127−132 they
are expected to be further accelerated by the next develop-
ments of this fast-evolving field.313−320 In the future, when
deep learning can be used to accelerate the essential quantum
mechanics-based calculations like DFT329−333 and DFPT334 in
practice, significant advancements may be envisioned. On the
contrary, some advanced physics-based computational ap-
proaches are also under development. Among them are
SuperConducting DFT,335−337 a fully ab initio approach for
Tc, and a GW perturbation theory-based scheme for
computing electron−phonon coupling.338 Once these methods
can be fully demonstrated, further advances in this field may be
anticipated.
5.2. Materials Informatics Approaches. Different from

the experimental and theoretical efforts with a century of
history and the computational approaches that have blossomed
for two decades, materials informatics has less than a decade of
development in terms of understanding and discovering
superconductivity. Compared to the DFPT-based computa-
tional approaches, the driving force behind almost all of the
discoveries of hydride superconductors discussed in section 3,
materials informatics remains in its early stage, in terms of the
methodology development and the impacts to the field.
Nevertheless, opportunities exist on the horizon for the
informatics-based methods to efficiently complement the
traditional (computational and experimental) approaches.
With an eye on the future, some critical challenges, discussed
below, are waiting to be resolved.
5.2.1. Generation and Accumulation of Data. Data

development is the most critical challenge of materials
informatics approaches in superconductor discovery. In this
area, available data are scarce and insufficient. The largest
superconductor data set is SuperCon2, developed in 2023
with ≃40 000 records. The most widely used data set, i.e.,
NIMS SuperCon, in its cleaned version (SuperCon), has
≃16 000 records.137 For both of them, only the chemical
formula is available for the description of the materials.
Attempts to augment the chemical formula with atomic details
using the structure matching/lookup method produced data
sets with up to ≃5700 records,143 as they rely on NIMS
SuperCon for the experimental values of Tc. Such data sets
are small and less informative than other branches of materials
informatics.

Besides a few high-throughput computational efforts that
can generate hundreds to thousands of data records of λ, ωlog,
and computed Tc,

140,141,148−150 the vast majority of the
literature can only report results from works of structure
prediction performed for a handful of materials. This is the
main limitation of the available computational data in the field.
An initial attempt to collect atomic-level data from the
literature142 returns nearly 600 records, but more efficient and
scalable methods are needed. Given some known limits of the
computational approaches, computed data, when developed,
should be combined with (more trustworthy) experimental
data and “machine” learned in a collective and complementary
manner.

The scientific literature also hosts a huge, yet essentially
untouched, experimental data reservoir. During the past
decade, NLP-based approaches such as NER have demon-
strated their power in creating SC-CoMIcs,160,161 Super-
Mat,163 and SuperCon2.164 Significant future developments
are anticipated for these methods can be used to extract the
crystallographic information, typically distributed throughout

Figure 15. Critical temperature Tc, computed for some notable
superconductors using the McMillan formula and solving the
Éliashberg equations, given in comparison with measured Tc values.
The value of μ* and the question of anharminicity, labeled by anh and
har, are shown. The inset is used for the small-Tc regime. The x-axis
errror bars were obtained from different measured values of Tc, while
different computed values of Tc are shown separately for further
discussions.
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the full text and in tables, supporting information material, and,
in few cases, some atomic structure formats. In such a
challenging endeavor, large language models (LLMs) like
ChatGPT339 and Meta Llama 2 and 3340 could be useful, as
recently demonstrated.341,342 Nevertheless, there are enormous
challenges before this approach can become mature and
efficient in literature data extraction.
5.2.2. Deep Learning for the Physics of Superconductivity.

Superconductivity is highly collective and nonlocal in nature.
The coherence length of the Cooper pairs can range from a few
nanometers as in LaH10,

101 YH6 and YH9,
105 and CeH9

106 to
several hundred nanometers as in many known super-
conductors.343 Chemical formulas do not include such
information and, thus, are insufficient for informatics
techniques. Even when the atomic structures are used to
describe the materials, recognizing such behaviors is impossible
for local-environment- and fragment-based featurzing schemes
like SOAP304 and SiRMS.295 In such “hand-crafted” featurizing
schemes, the typical “neighboring” distance cutoff of ∼10 Å is
far too small for the physics of superconductivity. However,
bringing this length scale to the order of hundreds of
nanometers will certainly (and exponentially) increase the
size and the complexity of feature vectors, making them
impractical.
In this context, deep-learning techniques that can directly

accept the atomic structures (of course, when data are
available) to understand both the local atomic environments
and the long-range orders of the materials could be useful.
Deep neural network-based architectures139 like ATCNN138

and ALIGNN307 have been developed and used in some cases
with encouraging results. Nevertheless, further developments
for this challenging problem, going beyond these initial steps,
are needed and anticipated. Equivariant neural networks, in
which essential physics-inspired invariances are respected, have
begun to emerge and show their applicability in materials
informatics.281−283

5.3. ML-Guided Search for Ambient-Pressure Super-
conductors. After two decades of discoveries at hundreds of
gigapascals, recently attention has gradually shifted to the
search for possible high-Tc superconductivity at lower
pressures.97,129,140−142,147 Given the infinite materials space
and the complexity of the traditional physics-based approaches,
rapid ML models for predicting superconductivity, as discussed
in section 4, could be useful, but not without challenges.
Adding to the challenges outlined in sections 5.2.1 and 5.2.2
for developing the ML models, another notable problem is that
inferences made outside, or far from, the scope of their
experience are generally not good.344 Thus, if a ML model is
trained on superconductors whose Tc ≤ 150 K (at ambient
pressure), it may not be able to recognize superconductors
with higher Tc values.
One possible way to expand the “domain of applicability” is

to include in the training data the atomic-level details of the
(computational and experimental) discoveries at any pressures,
for which Tc could be much higher (e.g., ≃200 K for H3S and
≃250 K for LaH10).

142 Trained on such a data set, the obtained
models may recognize the atomic details related to high-Tc
superconductivity at any pressures, including ambient pressure.
In this approach, external pressure P is assumed to connect
with the superconductivity indirectly; i.e., P determines the
atomic structures, which, in turn, determines the super-
conductivity. This assumption has its roots in thermodynamics,
where P, a macroscopic concept, determines the atomic

structures through the equation P = −∂H/∂V, given that both
enthalpy H and volume V of a unit cell are solely functions of
the atomic structures. The current edition of such a training
data set, i.e., CompSC, is small, containing 587 atomic
structures with 584 values of λ and 567 values of ωlog.

142 When
a substantially larger and more diverse version is available and
advanced deep-learning techniques are developed, the ML
models trained on this data set may be more effective and
useful.

Along another dimension, potential non-hydrogen high-Tc
superconductors have not been explored appropriately.
Although hydrides may have a favorable vibrational frequency
spectrum for high-Tc superconductors, this field remains full of
other enigmas and wonders. As CompSC currently contains
mostly hydrides,142 the inclusion of non-hydrogen super-
conductors would be critical to an exploration beyond the
hydride-related boundary.

6. SUMMARY
Research efforts devoted to superconductor discovery in the
past two decades have been massive and incredible. Among
thousands of superconductors predicted computationally at
hundreds of gigapascals, a few dozen were synthesized and
characterized experimentally. The inspiring results have
somehow rekindled the dream of room-temperature super-
conductors. Nevertheless, this “holy grail” remains far from
being attainable while technical challenges are numerous and
enormous. Many of them are related to conducting measure-
ments at hundreds of gigapascals in a DAC and then analyzing
and/or interpreting the obtained data.52,110−116 Theoretical
foundations and computational approaches, on the contrary,
have their own inherent hard limits that are not easy to
overcome.

Materials informatics approaches, emerging as a new frontier
of materials research, could be useful to complement the
traditional approaches. In the past decade, some essential
components of materials informatics for superconductor
discovery have been developed, reaching an inspiring level of
maturity. Tremendous opportunities will become available in
the future when the enormous challenges can be resolved. The
most notable challenges are, but not limited to, those related to
data generation and curation, deep-learning techniques that
can capture the physics of superconductivity, and a reliable
ML-guided search protocol for high-Tc superconductors at
ambient pressures. Looking at other branches of materials
informatics where tremendous advancements have been made,
we believe that superconductor discovery may be significantly
advanced with the new developments in this new frontier of
materials research.
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