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ABSTRACT

Polymer Genome is a web-based machine-learning capability to perform near-instantaneous predictions of a variety of polymer properties.
The prediction models are trained on (and interpolate between) an underlying database of polymers and their properties obtained from first
principles computations and experimental measurements. In this contribution, we first provide an overview of some of the critical technical
aspects of Polymer Genome, including polymer data curation, representation, learning algorithms, and prediction model usage. Then, we
provide a series of pedagogical examples to demonstrate how Polymer Genome can be used to predict dozens of polymer properties, appro-
priate for a range of applications. This contribution is closed with a discussion on the remaining challenges and possible future directions.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0023759

I. INTRODUCTION

In the last decade, interest in utilizing data-driven informat-
ics approaches has intensified within materials science and
engineering.1–3 One sub-domain of materials’ research which
appears to be ripe for informatics-based forays is polymer science
and engineering.4–9 Polymeric materials are simple and complex at
the same time. Typically composed of the smallest atoms of the
periodic table, polymers can display extraordinary diversity at very
small and large scales, ranging from an immense array of possibili-
ties for atomic-level connectivity, chain packing, and morphology
(the last being a catch-all expression to capture crystallinity, phase
separation, porosity, and microstructure). This diversity of structure
leads to a plethora of attractive properties as reflected by the ubiq-
uity of polymers in everyday life and high-technology.10,11

The vast chemo-structural space of polymer possibilities leads
to enormous challenges with respect to studying them (either using
experimental or computational methods), especially when one is
interested in searching this space for attractive candidates for a
given application.12 Furthermore, it is also non-trivial to effectively
harness the existing (and exponentially growing) knowledge base of
past studies toward further developments and discoveries. Recent
developments in the polymer informatics arena are attempting to
fill the above gap by effectively exploiting available data (or using

intentionally created data) and advanced machine-learning (ML)
algorithms.13,14 These methods may be used to rapidly estimate
properties of new materials.1,8,9,15–19 Moreover, opportunities exist
for inverting the property prediction pipeline to efficiently identify
materials that satisfy target property or performance objectives.18–21

One such development, which we call the Polymer Genome
project,8,9 is discussed here and portrayed schematically in Fig. 1.
The essential ingredients of the Polymer Genome project (or any
such informatics effort) are the following. Systematic and continu-
ous accumulation of (experimental and computational) polymer
data is the necessary first ingredient. In Polymer Genome, such
data are either being acquired from a variety of literature
sources29–33 or being generated using computations in a high-
throughput and consistent manner.34 ML algorithms then convert
these data to knowledge (and predictive models) in a step-by-step
manner. The first step within the ML pipeline is converting the
data into machine readable form via a fingerprinting step that
encodes features of the polymer at a variety of hierarchical length
scales in a numerical fingerprint vector. The next step in the ML
pipeline is the learning step, during which the polymer fingerprint
vectors are mapped onto the corresponding polymer property
values, using one of many algorithms; this step is essentially a func-
tion finding exercise, i.e., the best hypothesis function that links the
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fingerprint vectors and the property values is identified following
robust statistical practices. The hypothesis function, one for each
property for which data are available, constitutes a “surrogate”
model for the instantaneous prediction of the corresponding
polymer property.

The above workflow has been utilized to develop numerous
surrogate models, which are deployed and may be used at
www.polymergenome.org. Predictions for several dozen attributes
of polymers may be made using this platform at the present time.
A user-friendly graphical user interface (GUI) is provided to easily
build and query polymers of interest. In addition to providing an
ultrafast capability to estimate the properties of new polymers,
these prediction models are also used to guide further data genera-
tion (e.g., based on whether a polymer has an attractive property
value or if the uncertainty of the prediction is too high) either
through computational or empirical work (see Fig. 1).

The goal of the present Tutorial is to introduce Polymer
Genome as a practical tool for the polymer community. We will
outline the critical scientific and technical aspects of Polymer
Genome, including polymer data accumulation and generation,
the fingerprinting scheme using which polymers can be repre-
sented numerically in a machine readable form, the learning algo-
rithms used for developing surrogate models for the prediction of
polymer properties, and the online platform for handling the
interactions with end-users (see Fig. 1). Then, a set of tutorials
will be provided, illustrating the applications of Polymer Genome
to solve some practical problems involving property predictions
and design. This Tutorial is closed by a discussion on the remaining
challenges and the future development plan of Polymer Genome.

II. POLYMER GENOME PIPELINE

A. Polymer data

A comprehensive summary of the data sets, the predictive
(surrogate) models, and the polymer properties supported by
Polymer Genome is given in Table I. Overall, data sets correspond-
ing to several dozen polymer attributes were utilized to build

surrogate models for dozens of properties. In fact, some polymer
properties pose extra dimensions, requiring additional data sets for
the model training. For example, the model that predicts if a
polymer can (or cannot) be dissolved by each of 24 regular solvents
(the completed list can be found in Ref. 25) was trained on 24 cor-
responding data sets. The capability of predicting the permeability
of a polymer to six gases (CH4, CO2, He, N2, O2, and H2) was
developed from six distinct data sets.27 The dielectric constant
measured at nine frequencies ranging from 60 Hz to 1015 Hz was
utilized to allow Polymer Genome to predict the frequency-
dependent dielectric constant of polymers.23 These data sets are
also structurally diverse, containing both linear and ladder poly-
mers (see Sec. II B and Fig. 3 for more information). This signifi-
cant complexity introduces both challenges and opportunities for
encoding the chemical structure of polymers and developing the
surrogate property prediction models.

The majority of the property prediction models in Polymer
Genome utilizes experimentally measured data. Within this polymer
data class, the biggest entities, i.e., the solvent/non-solvent data set
(6721 polymers) and the glass transition temperature data set
(5076 polymers), are far bigger than those involving computa-
tional data, except the bandgap data set. While experimental data
are enormously important for Polymer Genome, collecting such
information from published journals, printed handbooks, and
online repositories29–33 is challenging because of both technical
and non-technical reasons, requiring laborious manual data
extraction and validation.

Data from computational sources were generated34,35 using
density functional theory (DFT) as implemented in VASP

software.36–39 Within this high-throughput computational work-
flow, polymer models of increasing sophistication, i.e., polymer
chains and crystals, were constructed before relevant properties can
be computed. Currently, seven data sets have their origins in com-
putations, including polymer chain and crystal bandgap (computed
using the HSE06 exchange-correration functional22), atomization
energy, ionization energy, electron affinity, static dielectric constant,
and refractive index. We note that a separate refractive index model
that utilizes primarily experimentally measured data are also avail-
able on Polymer Genome; the model based on computational data
tends to over-estimate the refractive index as this data set corre-
sponds to polymer crystals that tend to be denser than real poly-
mers. The primary challenge of this workflow is that predicting
polymer crystal structure is computationally intensive, specifically
when established methods, e.g., minima-hopping40,41 and USPEX,42,43

are used.34,44,45 A new efficient method, referred to as polymer struc-
ture predictor, was recently developed, strictly enforcing pre-defined
atomic connectivity and known modes of chain packing.35 In the
near future, this method will be used to autonomously explore the
polymer space for those satisfying targeted properties46 and system-
atically generating/accumulating polymer data.

The curated polymer data sets were unified in a principal data
set of 13 347 polymers, nearly all of which have been experimen-
tally synthesized and reported elsewhere. This master data set is
visually portrayed in Fig. 2(a). In Figs. 2(b) and 2(c), it is shown as
the background on which two representative polymer property data
sets, i.e., polymer chain bandgap and glass transition temperature,
are overlaid. In the future, computations will be used to maximize

FIG. 1. An overview of the architecture of Polymer Genome.
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the coverage within the principal data set, which will also be gradu-
ally expanded.

B. Polymer fingerprints

Materials’ data are generally very diverse in nature and format
and, thus, not directly readable/ready for computer learning.
In practice, the various cases under study must be represented
numerically by a fingerprint or descriptor in the machine-learning
process.15,16,47–50 Good fingerprints should be closely related to the
nature of materials and properties, adequately capturing enough
chemo-structural information of the materials, and satisfying
certain requirements, e.g., being invariant with respect to transfor-
mations that do not change the materials in any physical way.
A good review of materials’ fingerprints can be found in Ref. 15.

The chemical structure of the repeat unit of a polymer may
be represented by a string of characters called SMILES, which stands
for the simplified molecular-input line-entry system.51 SMILES was
initially defined for molecules and has been extended to polymers
by explicitly specifying the connecting points of polymer repeat
units.8 At the present time, Polymer Genome supports two main
classes of polymers, i.e., linear polymers and ladder polymers, the
former has two connecting points and the latter has four connect-
ing points in each repeat unit. For an illustration of the polymer
SMILES concept, Fig. 3 sketches the chain, the repeat unit, and the
SMILES string of poly(isobutylene), i.e., a linear polymer, and poly
(naphthalene-2,3:6,7-tetrayl-6,7-dimethylene), i.e., a ladder polymer.
Generally, writing a SMILES string of a complex polymer is cumber-
some, thus a detailed guideline of polymer SMILES and a GUI-based
polymer draw tool are provided at www.polymergenome.org.

TABLE I. A summary of the curated polymer data sets, the developed models, and the polymer properties supported by Polymer Genome. These properties are arranged in
some categories, including “electronic properties” (rows 1–4), “response properties” (5–8), “mechanical properties” (9–10), “thermal properties” (11–13), “solubility properties”
(14–15), “permeability properties” (16), “physical and thermodynamic properties” (17–20), and “other properties” (21–22). Here, GPR, CK, and ANN stand for Gaussian process
regression, co-Kriging, and artificial neural network, respectively. Model performance is given in terms of either classification accuracy (for the polymer/solvent compatibility) or
RMSECV, the averaged cross-validation (CV) test error of the CV models created when the 100%-data model is trained. References and notes are provided when available.

Data ML
No. Polymer properties Source Size Algo. RMSECV Notes Reference

1 Polymer crystal bandgap Comput. 562 GPR 0.26 eV Training data produced using using
HSE06 XC functional22

8

2 Polymer chain bandgap Comput. 3881 GPR 0.24 eV Training data produced using using
HSE06 XC functional22

3 Ionization energy Comput. 371 GPR 0.21 eV
4 Electron affinity Comput. 371 GPR 0.18 eV
5 Static dielectric constant

(crystal)
Comput. 383 GPR 0.38 8

6 Frequency-dependent
dielectric constant

Exper. 1193 GPR 0.16 Training data include measurements at
60, 102, 103, 104, 105, 106, 107, 109, and

1015 Hz

23

7 Refractive index (bulk resin) Exper. 516 GPR 0.04 24
8 Refractive index (crystal) Comput. 383 GPR 0.07 8
9 Tensile strength Exper. 672 GPR 4.75MPa
10 Young’s modulus Exper. 629 GPR 120MPa
11 Glass transition temperature Exper. 5076 GPR 18.8 K 8
12 Melting temperature Exper. 2084 GPR 27.1 K
13 Thermal decomposition

temperature
Exper. 3545 GPR 28.03 K

14 Polymer/solvent (in)
compatibility

Exper. 6721 ANN 93% accurate
classification

The compatibility with 24 solvents is
predicted

25

15 Solubility parameter Exper. 112 GPR 0.47MPa1/2 26
16 Gas permeability Exper. 1779 GPR 1.2 Barrer The permeability to CH4, CO2, He, N2,

O2, and H2 is predicted
27

17 Polymer density Exper. 890 GPR 0.03 g/cc 8
18 Atomization energy Comput. 391 GPR 0.01 eV/atom 8
19 Specific heat Exper. 80 GPR 0.07 J/gK
20 Fractional free volume Exper. 133 GPR 0.01
21 Limiting oxygen index Exper. 101 GPR 3.73%
22 Tendency to crystallize Exper. 429/107 CK 8.38% Training data include low- and

high-fidelity data
28
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The polymer fingerprinting scheme of Polymer Genome
accepts polymer SMILES strings as the input in order to create the
numerical fingerprint vectors. Starting from its early versions devel-
oped in Refs. 8 and 17–19, this scheme has been significantly
advanced. Currently, polymers are described by up to ≃3000 finger-
print components, arranged into three categories that correspond to

three different length scales, as sketched in Fig. 4. The finest-level
components are atomic triples AiBjCk, comprised of an i-fold coor-
dinated atom of species A, a j-fold coordinated atom of species B,
and a k-fold coordinated atom of species C, joined together in this
order.18 At the next (block) level, pre-defined fragments such as
cyclopentane and cyclohexane are identified from the polymers and
then their occurence is normalized in the fingerprint compo-
nents.17,19 At the (highest) chain level, characteristic features of the
polymers such as the length of the longest side chain, the distance
between two specific blocks, etc. are captured.8

The fingerprint scheme was designed to capture a wide variety
of physical and chemical processes, which govern different polymer
properties. For example, the glass transition temperature Tg charac-
terizes the processes that involve the motion of long polymers
chains, thus the most relevant fingerprint components for Tg

should be some long length-scale features such as the length of the
longest side chain. On the other hand, the atomization energy is
essentially determined by the atomic-scale details of the polymers
while long length-scale contributions like van der Waals interac-
tions are much smaller. For this reason, the atomization energy can
be predicted pretty well with atomic-fragment fingerprints.8,18

Additional components can also be added into the polymer finger-
print scheme in order to better capture specific behaviors of
polymer properties. As an example, when frequency was used as a
fingerprint component, the frequency-dependent dielectric cons-
tant is captured very well.23

FIG. 2. A visualization of (a) the principal data set of 13 347 polymers, (b) the single-chain bandgap data set of 3881 polymers, and (c) the glass transition temperature
data set of 5076 polymers. In (b) and (c), gray dots show the principal data set. Color bars are used for encoding the fraction of sp3 bonded C atoms in (a), the value of
bandgap in (b), and the glass transition temperature in (c). The visualization was created by projecting the polymer data sets onto a 2D space spanned by PC1 and PC2,
two first principal axes obtained by a principal component analysis.

FIG. 3. Polymer chain, repeat unit, and SMILES representations of poly(isobutyl-
ene), i.e., a linear polymer (top), and poly(naphthalene-2,3:6,7-tetrayl-6,7-
dimethylene), i.e., a ladder polymer (bottom). The required connecting points
are indicated by some special symbols in the SMILES strings, as discussed in the
text. Carbon and hydrogen atoms are given in brown and pink, respectively.
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For each polymer property, the entire list of ≃3000 fingerprint
components were down selected significantly and separately using
the Recursive Feature Elimination (RFE) or the Least Absolute
Shrinkage and Selection Operator (LASSO) algorithms.52 Then, the
surviving fingerprint components were checked for possible corre-
lations and those that are correlated are simplified. During this
process, least important fingerprint components are pruned,
keeping only the most relevant components in order to form the
optimal fingerprint. As discussed above, the final version of the fin-
gerprint obtained for each property contains the components that
capture the most important underlying characteristic processes.
These algorithms were found8 to be critical for eliminating infor-
mation redundancy, which likely adds unnecessary noise to the
polymer data and leads to the development of ML models that are
faster and more accurate. However, we also note that the finger-
print component reduction could potentially reduce the generaliz-
ability of the models when they encounter the cases that do not
clearly exhibit the correlations—strictly speaking, this possibility is
rooted at the finiteness of the data. Therefore, for a few models
whose performance was not improved significantly during the
feature reduction step, we kept the original version of fingerprint in
order to maintain their generalizability.

C. Machine-learning algorithms

Learning algorithms are needed next to establish mappings
between polymer fingerprints and properties. Among the models
supplied by Polymer Genome (see Table I), the vast majority were
developed using Gaussian process regression (GPR or Kriging)13,14

with a radial basic function kernel. There are several reasons for the
preference given to this elegant non-parametric Bayesian method.
First, GPR is explicitly similarity-based and, therefore, intuitive.
Second, by assuming the output is a realization of a Gaussian
process, GPR provides a built-in measure of the prediction uncer-
tainty. Finally, the current polymer data sets are not too big, thus
training a GPR model and using it to make predictions is not com-
putationally intensive.

Co-Kriging (CK)53 is an information-fusion approach that is
ideal when multiple sources of data (perhaps with different levels of
fidelity) are available for the same property.54–56 CK is used in
Polymer Genome to predict the tendency of a polymer to crystallize,
which can be quantified based on two measures (with different levels
of fidelity). These two measures allowed us to create two separate
data sets that quantify the tendency of crystallization.28 The first set
contains 107 “high-fidelity” data points, measured either directly
using methods like nuclear magnetic resonance, x-ray diffraction,
and infrared spectroscopy or indirectly from the experimental data
of extensive properties like heat fusion and density. In the second
set, 429 “low-fidelity” data points were obtained computationally
using the group contribution method.31 These data sets are consid-
ered as two Gaussian processes, the former is the sum of the latter
(scaled by a factor) and another independent process.54,55 In other
words, the CK formalism fuses high- and low-fidelity data sets into a
model whose prediction accuracy is significantly improved.56

An artificial neural network (ANN) consists of numerous
nodes or neurons, arranged in a series of layers, starting from the
input layer, going through hidden layers before ending at the (last)
output layer. Each neuron receives signals from all the neurons of
the prior layer (or import directly from the input if it is in the
input layer), processes the data, and transmits the activated outputs
to all the neurons of the next layer (or export directly as the output
if it is in the output layer). This architecture can capture very well
the highly non-linear hidden relationships between materials’ struc-
tures and their properties and has been widely used in materials’
research during the last decade.57–62 In Polymer Genome, the
architecture of ANN is particularly suitable for the data structure
and the learning problem of the solvent/non-solvent prediction
model.25 In the near future, the powerful ANN algorithm may be
considered for other models.

D. Machine-learning models

The demonstrated developments of data generation and cura-
tion, polymer fingerprinting, and learning algorithms set the stage for

FIG. 4. Hierarchical fingerprints used to represent polymers in the Polymer Genome pipeline.
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learning the fingerprinted data and creating ML prediction models.
During this data-learning process, the models were created using five-
fold cross validation.15,16,63 In this multi-step standard procedure in
supervised learning for minimizing the risk of overfitting, the training
data set is split into k bins first. Then, each of these bins is left out
for testing the model that is trained on the union of the remaining
k� 1 bins. This step involves creating k models, and the model that
performs the best on the designated test set is selected.

For each of the property/performance of polymers for which
data were curated, a ML model was developed and implemented.
Essential information of these models, including details of the train-
ing data, the algorithm, the cross-validation root mean square errors
of the models, and the available references, is summarized in Table I.
Figure 5 visualizes the performance of a subset of 12 models devel-
oped and implemented in Polymer Genome, including polymer
crystal and chain bandgap, frequency-dependent dielectric constant,
gas permeability, specific heat, tendency to crystallize, tensile strength,
Young’s modulus, glass transition temperature, melting temperature,
thermal decomposition temperature, and polymer density. Some
essential information of these models is also given in Fig. 5.

E. Polymer Genome online platform

The Polymer Genome online platform was created and made
freely accessible at www.polymergenome.org, offering end-users a
convenient toolkit to access the ML models for polymer property pre-
dictions. Using a GUI, users can easily specify and query the polymers
of interest. Working under this interface layer, the Polymer Genome
platform obtains the polymer SMILES string, converts it into finger-
prints, predicts its properties using the implemented models, and
finally returns the results. The whole process will take up to a minute
if not seconds. Polymer Genome platform was developed using
Python and standard web programming languages such as Hypertext
Preprocessor (PHP) and Hypertext Markup Language (HTML).

Polymer Genome offers various options to query a polymer,
i.e., by using its name, common abbreviation, the building block
representation of its repeat unit,64,65 its class, its SMILES string, and
especially by drawing it using the implemented GUI-based polymer
draw tool, which is shown in Fig. 6. Because writing a SMILES string
for a complex polymer is generally not straightforward and often
very time-consuming, the polymer draw tool offers a very

FIG. 5. Visualized performance of 12 representative (out of more than 20) surrogate models developed in the Polymer Genome project, given in sub-panels (a)–(l).
Essential information of these models, in which RMSE100% is the root mean square error of the model trained on 100% (the entire) of the data and RMSECV, test is the
average of the cross-validation test error of the models created when the 100%-data model is trained, is also given.
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FIG. 6. GUI-based polymer draw tool
implemented in Polymer Genome.
While a polymer is drawn, its SMILES

string is updated on-the-fly and when
the drawing is done, it will be copied to
the search tool by clicking button
“Predict Properties.” The ladder
polymer sketched in this figure is poly
(naphthalene-2,3:6,7-tetrayl-6,7-dimeth-
ylene).
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convenient and powerful method for graphically drawing the queried
polymers. This tool handles linear and ladder polymers, the latter is a
specific class of cross-linked polymers, involving cross-links between
pairs of polymer chains. Comprehensive user guidelines are provided
at www.polymergenome.org and by some YouTube videos, which can
be found by searching for “Polymer Genome.”

Accepting the query for a polymer from users, Polymer Genome
returns its class, abbreviation, synonyms, and similar polymers, the
3D visualization of the repeat unit with atomic coordinates, and its
predicted properties. Dozens of properties predicted are categorized
into multiple groups, including electronic properties, dielectric and
optical properties, mechanical properties, thermal properties, physical
and thermodynamic properties, and solubility properties. An example
of the search result page is given in Fig. 7.

III. TUTORIALS: POLYMER GENOME FOR POLYMER
PROPERTIES PREDICTIONS

This section is devoted to a set of eight tutorial problems,
designed to provide end-users systematic and pedagogical guide-
lines in the usage of Polymer Genome.

A. Polymer SMILES

Description. Please write the SMILES string of polyethylene,
polypropylene, and polyvinylidene fluoride whose repeat units are
shown in Fig. 8.

Solution. By referring to the guidelines available at
www.polymergenome.org, the SMILES strings of these polymers can
be written as [*]CC[*] for polyethylene, [*]C(C)C[*] for polypro-
pylene, and [*]CC(F)(F)[*] for polyvinylidene fluoride.

B. GUI polymer draw tool for complex polymers

Description. It is not easy to directly or manually construct a
SMILES string for a complex polymer such as polyvinylpyrrolidone66

and PIM-1 (polymers of intrinsic microporosity),67 as shown in
Fig. 9. Please use the polymer draw tool to sketch these polymers
and obtain the SMILES strings.

Solution. In this Tutorial problem, users will find using
the GUI-based polymer draw tool is much more convenient.
After completing the drawing, users will obtain the SMILES strings of
these polymers as [*]CC([*])N1CCCC1=O and C12=CC4=C
(C=C1CC3=C(C2)C(C#N)=C([g])C([t])=C3C#N)C5 (CC4(C)C)
C6=C(CC5)C=C(O[d])C(O[e])=C6. We note that the SMILES strings
are not unique for a polymer, i.e., the same polymer may be repre-
sented using different legal SMILES strings. Thus, it is possible that
users may arrive at different SMILES strings for these polymers under
discussion.

C. Save drawn polymers for later use

Description. Polymers in the same family may share some
common substructures, and drawing them separately is quite
inconvenient/inefficient. In this Tutorial, users are asked to (1)
draw polymer (a) in Fig. 10, (2) right click (on a Windows or
Linux computer) or hold Ctrl and click the mouse (on a Mac) on
the draw tool, select “Copy as MOL,” and paste the copied text into
a file with extension .mol, (3) open a blank draw windows, right
click (or holding Ctrl while click the mouse) again, select “Paste
MOL or SDF or SMILES,” either paste the text from the saved file
or upload it, click “Accept” to import the saved information, and
(4) continue editing the imported polymer to make polymer (b)
in Fig. 10.

FIG. 7. An overview of Polymer Genome online platform available at
www.polymergenome.org. Keyword kevlar is used as an example user input to
show resulting Polymer details page.

FIG. 8. The chemical structure of polyethylene, polypropylene, and polyvinylidene.
FIG. 9. The chemical structure of polyvinylpyrrolidone, a linear polymer (left)
and a PIM-1 (polymers of intrinsic microporosity), a ladder polymer (right).
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Solution. After completing the aforementioned steps, users
will find saving and reusing the drawn polymers a very conve-
nient practice that could save lots of time when using Polymer
Genome.

D. Query polymers with block notations

Description. Because of some historical reasons, Polymer
Genome supports the use of some pre-defined polymer building
blocks, some of them are –CH2–, –NH–, –C6H4–, and –C4H2S–,
for defining a class of linear polymers.64,65 A full list of these
blocks and their SMILES string can be found in the guidelines at
www.polymergenome.org. Users are now asked to use Polymer
Genome in order to (1) predict the crystal bandgap and the
total dielectric constant of three polymers whose repeat unit are
–NH–CO–NH–C6H4–, –CO–NH–CO–C6H4–, and –NH–CS–NH–
C6H4– in the block notation and then (2) compare the predictions
with the results obtained by DFT computations which can be
found in Fig. 3 of Ref. 64.

Solution. Users will find the predicted values at about ≃5%
from the DFT computed values within less than a minute.
The primary advantage of using Polymer Genome is the speed
with which the results can be obtained. For reference, the DFT
computations reported in Ref. 64, which include (1) polymer
crystal structure prediction and (2) bandgap and dielectric constant
calculations for the predicted structures, need days to weeks
to complete.

FIG. 10. Two complex polymers, given in (a) and (b), used in Tutorial “Save
drawn polymers for later use.”

FIG. 11. Predicted and measured Tg
of (a) poly(methyl methacrylate), (b)
poly(ethyl methacrylate), (c) poly(propyl
methacrylate), and (d) poly(butyl meth-
acrylate) (top panel). The clear trend is
that the longer side chain, the lower
Tg. In the bottom panel, a double bond
is introduced in the main chain of
these polymers, raising its stiffness,
and resulting in consistently higher pre-
dicted Tg.
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E. Trends in the glass transition temperature

Description: There are several guidelines for the important
features affecting the glass transition temperature Tg of polymers,
two of them will be tested in this Tutorial. First, polymers with
longer side chain length could generally have smaller Tg. Second,
the higher the stiffness of the main chain (polymer backbone), the
higher the Tg. Please use the Polymer Genome to explore the afore-
mentioned effects and confirm the expected trends.

Solution: Poly(methacrylate) is a prototypical polymer that
can be used to verify both guidelines. Figures 11(a)–11(d) show the
structure of poly(methyl methacrylate), poly(ethyl methacrylate),
poly(propyl methacrylate), and poly(butyl methacrylate), which are
formed by attaching a methyl group, an ethyl group, a propyl
group, and a butyl group, respectively, at the end of the prototypi-
cal polymer main chain. By examining the predicted glass transi-
tion temperature, the first trend can be validated. Now, a double
bond is introduced in the main chain of these four polymers, ele-
vating the main chain stiffness. Consequently, user will find the
predicted glass transition temperature is significantly increased.

F. High refractive index polymers

Description: High refractive index polymers are particularly
useful for advanced photonic devices. In addition to a high refrac-
tive index n, suitable candidates should have high thermal stability,
of which a measure is the glass transition temperature Tg. As a
typical solution for designing intrinsic high refractive index poly-
mers, aromatic rings and/or sulfur-containing groups are used.68

Interestingly, as learned in the “trends in the glass transition tem-
perature” tutorial, aromatic rings could also enhance the stiffness of
the polymer backbone, thus raising Tg. Please use Polymer
Genome to (1) predict the refractive index and the glass transition
temperature of ten sulfur-containing polyimides given in Table II
of Ref. 68, (2) compare the predicted refractive index with that
given in the same reference, and (3) select the promising candidates
with n � 1:75 and Tg � 450 K.

Solution: Predictions were made for four out of ten polymers
requested, and the results are shown in Table II. Users can easily
extend this table and find the promising candidates. One of them
was already identified and highlighted in bold.

G. Polymeric membranes for gas separation

Description: A polymer that is good for separating O2 and N2

gases should have (1) high O2 permeability to allow O2 pass
through and (2) high O2/N2 selectivity to pass only a smaller
amount of N2 compared to O2. The O2/N2 selectivity is defined as
the ratio between the O2 permeability and the N2 permeability. In
this tutorial problem, the targeted permeability of O2 is 2000
Barrer and above, the O2/N2 selectivity is greater than 2, and the
N2 permeability is not higher than 1800 Barrer.

Solution: We will start from a template polymer, i.e.,
fluorenyl-poly(diarylacetylene) with the SMILES [*]C(=C([*])c1cc(F)
cc(F)c1)c4ccc3c2ccccc2C(C)(C)c3c4. This polymer has sufficiently
large O2 permeability (2727 Barrer) but the N2 permeability (1689
Barrer) is still not small enough to have the O2/N2 selectivity of 2
and above. Now, users are asked to modify this polymer by replac-
ing the left-side pendant c1cc(F)cc(F)c1 of this template polymer
by one of the following options: -O, -N, -COOH, -c1ccc1, c1c(N)
cc1, -c1cc(N)ccc1, -c1cc(Cl)cc(Cl)c1, -c1cc(Br)cc(Br)c1, -c1cc(I)cc
(I)c1, and -c1cc5ccccc5cc1, and tabulate the results. Note that the
GUI-based polymer draw tool is useful for this work. The results
are summarized in Table III, showing two candidates meeting all
three aforementioned requirements.

H. Finding solvents for multiple polymers

Description: Users are asked to prepare a solution-deposited
coating that is a combination of four different polymers, including
(1) poly(dioctyloxyphosphazene), (2) poly[1-(2,3,4,5,6-

TABLE II. Sulfur-containing polyimides that have high refractive index n and, thus,
could be useful for photonic devices if having high Tg. The reference refractive index
nref was taken from Ref. 68 while npred and Tpred

g were obtained using Polymer
Genome. The entry highlighted in bold is a promising candidate.

SMILES nref npred Tpred
g

[*]c3ccc(Sc2ccc(Sc1ccc([*])cc1)
cc2)cc3

1.75 1.72 ± 0.06 405 ± 50

[*]c3ccc(Sc2ccc(Sc1ccc([*])cc1)
s2)cc3

1.75 1.77 ± 0.06 347 ± 89

[*]c3ccc(Sc2nnc(Sc1ccc([*])cc1)
s2)cc3

1.75 1.71 ± 0.09 312 ± 154

[*]c5ccc(Sc4c1SCCSc1c(Sc2ccc
([*])cc2)c3SCCSc34)cc5

1.77 1.80 ± 0.07 462 ± 68

TABLE III. Predicted O2 permeability, N2 permeability, and O2/N2 selectivity of ten
polymers obtained in Sec. III G. Entries highlighted in bold are candidates that meet
the required criteria.

SMILES

O2

permeability
N2

permeability
O2/N2

selectivity

[*]C(=C([*])O)
c3ccc2c1ccccc1C(C)(C)c2c3

1112 711 6

[*]C(=C([*])N)
c3ccc2c1ccccc1C(C)(C)c2c3

1187 567 2.1

[*]C(=C([*])COO)
c4ccc3c2ccccc2C(C)(C)c3c4

525 299 1.8

[*]C(=C([*])c1ccc1)
c4ccc3c2ccccc2C(C)(C)c3c4

6642 3384 2.0

[*]C(=C([*])c1c(N)cc1)
c4ccc3c2ccccc2C(C)(C)c3c4

3683 1622 2.3

[*]C(=C([*])c1cc(N)ccc1)
c4ccc3c2ccccc2C(C)(C)c3c4

1638 797 2.1

[*]C(=C([*])c1cc(Cl)cc(Cl)c1)
c4ccc3c2ccccc2C(C)(C)c3c4

2521 1397 1.8

[*]C(=C([*])c1cc(Br)cc(Br)c1)
c4ccc3c2ccccc2C(C)(C)c3c4

2917 1412 2.1

[*]C(=C([*])c1cc(I)cc(I)c1)
c4ccc3c2ccccc2C(C)(C)c3c4

2597 1400 1.9

[*]C(=C([*])c1cc5ccccc5cc1)
c4ccc3c2ccccc2C(C)(C)c3c4

4194 3292 1.3
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pentafluorophenyl)ethylene], (3) poly(1-phenylethene-1,2-diyl),
and (4) poly(oxydecanedioyl). For convenience, the SMILES strings
of these polymers can be found in Table IV. In order to perform
this task, the polymers must all be soluble in the same solvent.
Among the limited types of solvents in the inventory (the full list
can be found in Ref. 25), select two solvents that can be used to dis-
solve all the polymers on the list.

Solution: The list of solvents predicted by Polymer Genome
for all four polymers in consideration is shown in Table IV. Based
on the obtained results, chlorobenzene and acetic acid, highlighted
in bold font in the table, can be used to dissolve all the polymers.

IV. GOING FORWARD

The emergence of polymer informatics has opened up a
pathway to instantly estimate the properties of new polymers and
efficiently explore the staggering polymer space. Polymer Genome
is a recent development in this sub-domain of materials research.
By harnessing the existing knowledge base of past studies, an eco-
system of new machine-learning based tools has been systematically
created, implemented, and deployed, serving the growing needs of
polymer scientists from both academic and industrial domains.
Needless to say, there are multiple open problems that need to be
addressed in the future.

The current polymer data sets and predictive models of
Polymer Genome do not handle network polymers, polymer
blends, copolymers, and those with species other than C, H, N,
O, B, F, Si, P, S, Cl, Br, and I. Polymers that have metal atoms in
the backbones, also referred to as organometallic polymers, may
host novel functionalities due to the nature of the carbon–metal
bonds.34,45,69,70 The first step to closing this gap is to collect and
curate literature data on these polymer subclasses, either

manually or using more sustainable natural language processing
based methods. Computational data can also be generated when
the polymer space is explored in an efficient manner using not
just high-throughput but also autonomous computational
workflows.46

Further innovations in fingerprint developments can also be
foreseen. First, when the polymer data are expanded to the new
chemical, morphology, and processing condition domains, new fin-
gerprint components are required. Second, the current polymer fin-
gerprint scheme does not capture conformational and chiral
degrees of freedom, and this deficiency should be solved in some
ways. Finally, when the number of fingerprint components
increases, more advanced feature engineering techniques should be
explored for identifying the most relevant information for model
development.

Going further, computer algorithms may also be used to dis-
cover the data representations (fingerprints), e.g., using variational
auto-encoders71–73 or by learning the SMILES of polymers. As the
data set size and diversity increase, deep learning approaches72,73

that can simultaneously ingest the entire data set for all properties
of interest and predict these properties at the same time, e.g., using
multi-task learning, is expected to play increasing roles in polymer
informatics.

Perhaps one of the most important motivations of the devel-
opment of ML prediction models is that they can be used to
design polymers with targeted properties for targeted applications.
Because polymer properties can be predicted almost instantly, an
intelligent enough algorithm could drive the polymer space explo-
ration toward a designated target efficiently within a reasonable
time scale. While some proofs-of-concept of this vision have been
reported,18–21 more sophisticated, efficient, and robust methods
should be further developed for making this goal become
practical.
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TABLE IV. Predicted solvents for four polymers considered, whose SMILES strings
are also provided for convenience. The predicted solvents appearing in the predic-
tions for all the polymers are highlighted in bold font.

Polymer poly(dioctyloxyphosphazene)
[*]N=P([*])(OCCCCCCCC)OCCCCCCCC

Solvents M-cresol, dichloromethane, acetic acid, NMP,
chlorobenzene, nitrobenzene, THF, chloroform,

benzene, toluene
Polymer poly[1-(2,3,4,5,6-pentafluorophenyl)ethylene]

[*]CC([*])c1c(F)c(F)c(F)c(F)c1F
Solvents Chlorobenzene, NMP, DMAc, nitrobenzene, acetic

acid, M-cresol, N-butanol, acetonitrile, DMF,
1,4-dioxane

Polymer poly(1-phenylethene-1,2-diyl)
[*]C=C([*])c1ccccc1

Solvents Chlorobenzene, NMP, DMAc, nitrobenzene, acetic
acid, M-cresol, N-butanol, acetonitrile, DMF,

1,4-dioxane
Polymer poly(oxydecanedioyl)

[*]OC(=O)CCCCCCCCC([*])=O
Solvents Dichloromethane, NMP, Acetic acid, chlorobenzene,

benzene, toluene, chloroform, THF, DMAc, 1,4-dioxane
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