

Unravelling polaron and bipolaron in (Li, Na)-doped V2O5 materials: DFT+U ID computational method Po

Huu T. Do

Department of Chemical Engineering, Chicago, Illinois, USA Email: huutdo09@gmail.com

Pristine and (Li, Na)-doped (α , β)-V2O5 polymorphs emerging as quintessential exemplars in manifold of practical applications, especially for new generations of (Li, Na)-battery cathode materials, as well as for probing exotic fundamental electronic properties. α -V2O5 characterize as a d^0 charge-transfer insulator with strong Op–V-d hybridization together with a large band gap, while β -Na $_{0.33}$ V $_2$ O $_5$ exhibits metal-insulator transition accompanied by a charge density wave (CDW) gap. With the highest oxidation state d^{+5} and layer structure, V_2O_5 has large potential to intercalate mobile alkaline (Li, Na) and alkaline earth elements which donate electrons to the framework. Consequently, the extra electrons routinely induce a polaronic mechanism in which they couple with available lattice distortions. It is a perennial issue that lonely density functional theory (DFT) faces challenging to approach bandgap and strongly correlated properties. In this talk, we perform the rigorous Hubbard U correction (DFT+U) is to characterize exactly the band gap of d-state chargetransfer V₂O₅ insulator as well as the CDW gap of β -Na_{0.33}V₂O₅. Remarkably, our calculations showcase capacity to unravel the presence of the free polaron in Li-doped α -V₂O₅ as well as the coincident quantum criticality of bipolaron-to-polaron, and energetic favorable antiferromagnetic-to-ferromagnetic transitions in β -phase.

ID: PST02 Poster Aug. 24, 16.00 - 17.30

Keywords: V_2O_5 , β -Na_{0.33} V_2O_5 , charge-transfer insulator, polaron, bipolaron-to-polaron transition, ab initio method